Home
Class 14
MATHS
If a + b = 1. Find the value of a ^(3) +...

If `a + b = 1.` Find the value of `a ^(3) + b ^(3) - ab - (a ^(2) - b ^(2) ) ^(2)`

A

`-1`

B

0

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( a^3 + b^3 - ab - (a^2 - b^2)^2 \) given that \( a + b = 1 \). ### Step 1: Use the identity for \( a^3 + b^3 \) We can use the identity: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Since \( a + b = 1 \), we can substitute: \[ a^3 + b^3 = 1 \cdot (a^2 - ab + b^2) = a^2 - ab + b^2 \] ### Step 2: Express \( a^2 + b^2 \) We can express \( a^2 + b^2 \) using the square of the sum: \[ a^2 + b^2 = (a + b)^2 - 2ab = 1^2 - 2ab = 1 - 2ab \] ### Step 3: Substitute \( a^2 + b^2 \) into the expression for \( a^3 + b^3 \) Now we substitute \( a^2 + b^2 \) into the equation from Step 1: \[ a^3 + b^3 = (1 - 2ab) - ab = 1 - 3ab \] ### Step 4: Calculate \( (a^2 - b^2)^2 \) We can use the identity: \[ a^2 - b^2 = (a + b)(a - b) = 1(a - b) = a - b \] Thus, \[ (a^2 - b^2)^2 = (a - b)^2 \] ### Step 5: Express \( (a - b)^2 \) Using \( a + b = 1 \): \[ (a - b)^2 = (a + b)^2 - 4ab = 1^2 - 4ab = 1 - 4ab \] ### Step 6: Substitute back into the original expression Now we substitute everything back into the original expression: \[ a^3 + b^3 - ab - (a^2 - b^2)^2 = (1 - 3ab) - ab - (1 - 4ab) \] ### Step 7: Simplify the expression Now we simplify: \[ = 1 - 3ab - ab - 1 + 4ab \] \[ = 1 - 1 + (-3ab - ab + 4ab) = 0 + 0ab = 0 \] ### Final Answer Thus, the value of the expression \( a^3 + b^3 - ab - (a^2 - b^2)^2 \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If a-b=5 and ab=12, find the value of a^(3)+b^(2)

If a = 2 and b = 3, find the value of (i) a + b (ii) a^(2) + ab (iii) ab - a^(2) (iv) 2a - 3b (v) 5a^(2) - 2ab (vi) a^(3) - b^(3)

If a+b=7 and ab=12 find the value of a^(2)-ab+b^(2) .

If a+b=7 and ab=12, find the value of (a^(2)-ab+b^(2))

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If a + b = 1. Find the value of a ^(3) + b ^(3) - ab - (a ^(2) - b ^(2...

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |