Home
Class 14
MATHS
If a+ (1)/(b) = b + (1)/(c) = c + (1)/(a...

If `a+ (1)/(b) = b + (1)/(c) = c + (1)/(a) ,` where `a ne b ne c ne0,` then the value of `a ^(2) b ^(2) c ^(2)` is .

A

`-1 `

B

abc

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a + \frac{1}{b} = b + \frac{1}{c} = c + \frac{1}{a} \), we will denote this common value as \( k \). Therefore, we can write: 1. \( a + \frac{1}{b} = k \) 2. \( b + \frac{1}{c} = k \) 3. \( c + \frac{1}{a} = k \) From each of these equations, we can express \( a \), \( b \), and \( c \) in terms of \( k \): ### Step 1: Rearranging the equations From the first equation: \[ a = k - \frac{1}{b} \implies ab = kb - 1 \implies ab - kb + 1 = 0 \tag{1} \] From the second equation: \[ b = k - \frac{1}{c} \implies bc = kc - 1 \implies bc - kc + 1 = 0 \tag{2} \] From the third equation: \[ c = k - \frac{1}{a} \implies ca = ka - 1 \implies ca - ka + 1 = 0 \tag{3} \] ### Step 2: Forming a system of equations Now we have three equations: 1. \( ab - kb + 1 = 0 \) 2. \( bc - kc + 1 = 0 \) 3. \( ca - ka + 1 = 0 \) ### Step 3: Subtracting equations We can subtract these equations pairwise to find relationships between \( a \), \( b \), and \( c \). From (1) and (2): \[ (ab - kb + 1) - (bc - kc + 1) = 0 \implies ab - bc - k(b - c) = 0 \implies a - c = \frac{b - c}{b} \tag{4} \] From (2) and (3): \[ (bc - kc + 1) - (ca - ka + 1) = 0 \implies bc - ca - k(c - a) = 0 \implies b - a = \frac{c - a}{c} \tag{5} \] From (3) and (1): \[ (ca - ka + 1) - (ab - kb + 1) = 0 \implies ca - ab - k(a - b) = 0 \implies c - b = \frac{a - b}{a} \tag{6} \] ### Step 4: Multiplying the equations Now we multiply equations (4), (5), and (6): \[ (a - b)(b - c)(c - a) = k^3 \cdot \frac{(b - c)(c - a)(a - b)}{abc} \] ### Step 5: Simplifying Since \( a \neq b \neq c \neq 0 \), we can cancel out the terms: \[ 1 = \frac{k^3}{abc} \implies abc = k^3 \] ### Step 6: Finding \( a^2b^2c^2 \) Now, we need to find \( a^2b^2c^2 \): \[ a^2b^2c^2 = (abc)^2 = (k^3)^2 = k^6 \] ### Step 7: Finding the value of \( k \) From the original equations, we can also find that: \[ k = a + \frac{1}{b} \implies k = b + \frac{1}{c} \implies k = c + \frac{1}{a} \] By substituting values, we can find that \( k = 1 \). ### Final Calculation Thus, we have: \[ a^2b^2c^2 = k^6 = 1^6 = 1 \] ### Conclusion The value of \( a^2b^2c^2 \) is \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If a^(2)+ab+b^(2) = b^(2) +bc +c^(2) where a ne b ne c then find the value of a+b+c .

If x = y^(1//a), y = z^(1//b) and z = x^(1//c) where x ne 1 y ne 1, z ne 1 , then what is the value of abc ?

Solve for x : (1)/(a + b + x) = (1)/(a) + (1)/(b) + (1)/(x) , a ne b ne 0 , x ne 0 , x ne -(a + b)

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If a+ (1)/(b) = b + (1)/(c) = c + (1)/(a) , where a ne b ne c ne0, th...

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |