Home
Class 14
MATHS
If 2x = sqrta + (1)/( sqrta) , a gt 0 t...

If `2x = sqrta + (1)/( sqrta) , a gt 0` then the volume of `(sqrt (x ^(2) -1 ))/( x - sqrt (x ^(2) -1))`

A

`1/2 (a- 1)`

B

`a -1`

C

`a +1`

D

`1/2 (a +1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we start with the equation provided: **Given:** \[ 2x = \sqrt{a} + \frac{1}{\sqrt{a}}, \quad a > 0 \] ### Step 1: Solve for \( x \) To find \( x \), we divide both sides of the equation by 2: \[ x = \frac{1}{2} \left( \sqrt{a} + \frac{1}{\sqrt{a}} \right) \] ### Step 2: Find \( x^2 \) Now, we square \( x \): \[ x^2 = \left( \frac{1}{2} \left( \sqrt{a} + \frac{1}{\sqrt{a}} \right) \right)^2 \] \[ x^2 = \frac{1}{4} \left( \sqrt{a} + \frac{1}{\sqrt{a}} \right)^2 \] Expanding the square: \[ x^2 = \frac{1}{4} \left( a + 2 + \frac{1}{a} \right) \] \[ x^2 = \frac{a + 2 + \frac{1}{a}}{4} \] ### Step 3: Calculate \( x^2 - 1 \) Now, we calculate \( x^2 - 1 \): \[ x^2 - 1 = \frac{a + 2 + \frac{1}{a}}{4} - 1 \] To combine the terms, we convert 1 to a fraction: \[ x^2 - 1 = \frac{a + 2 + \frac{1}{a}}{4} - \frac{4}{4} \] \[ x^2 - 1 = \frac{a + 2 + \frac{1}{a} - 4}{4} \] \[ x^2 - 1 = \frac{a - 2 + \frac{1}{a}}{4} \] ### Step 4: Calculate \( \sqrt{x^2 - 1} \) Now we find \( \sqrt{x^2 - 1} \): \[ \sqrt{x^2 - 1} = \sqrt{\frac{a - 2 + \frac{1}{a}}{4}} = \frac{\sqrt{a - 2 + \frac{1}{a}}}{2} \] ### Step 5: Calculate \( x - \sqrt{x^2 - 1} \) Next, we calculate \( x - \sqrt{x^2 - 1} \): \[ x - \sqrt{x^2 - 1} = \frac{1}{2} \left( \sqrt{a} + \frac{1}{\sqrt{a}} \right) - \frac{\sqrt{a - 2 + \frac{1}{a}}}{2} \] \[ = \frac{1}{2} \left( \sqrt{a} + \frac{1}{\sqrt{a}} - \sqrt{a - 2 + \frac{1}{a}} \right) \] ### Step 6: Calculate the volume expression Finally, we need to find the expression: \[ \frac{\sqrt{x^2 - 1}}{x - \sqrt{x^2 - 1}} \] Substituting our previous results: \[ \frac{\frac{\sqrt{a - 2 + \frac{1}{a}}}{2}}{\frac{1}{2} \left( \sqrt{a} + \frac{1}{\sqrt{a}} - \sqrt{a - 2 + \frac{1}{a}} \right)} \] This simplifies to: \[ \frac{\sqrt{a - 2 + \frac{1}{a}}}{\sqrt{a} + \frac{1}{\sqrt{a}} - \sqrt{a - 2 + \frac{1}{a}}} \] ### Final Result Thus, the volume of the given expression is: \[ \frac{\sqrt{a - 2 + \frac{1}{a}}}{\sqrt{a} + \frac{1}{\sqrt{a}} - \sqrt{a - 2 + \frac{1}{a}}} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If 2x = sqrt(a) - (1)/(sqrt(a)) , then the value of (sqrt(x^(2) + 1))/(x + sqrt(x^(2) +1)) is

a+1=2sqrt(a)x then (sqrt(x^(2)-1))/(x-sqrt(x^(2)-1))=

If x=(1)/(2)(sqrt(a)+(1)/(sqrt(a))) , then show that (sqrt(x^(2)-1))/(x-sqrt(x^(2)-1))=(a-1)/(2) .

lim_(x rarr1)(sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1))

If x = (4 sqrt(ab))/(sqrt a + sqrt b) , then what is the value of (x + 2sqrt a)/(x - 2 sqrta) + (x + 2 sqrtb)/(x - 2 sqrt b) " (when " a ne b) ?

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If 2x = sqrta + (1)/( sqrta) , a gt 0 then the volume of (sqrt (x ^(2...

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |