Home
Class 14
MATHS
If x = sqrt5 + sqrt3 and y = sqrt5 - sqr...

If `x = sqrt5 + sqrt3 and y = sqrt5 - sqrt3,` then the value of `x ^(4) - y ^(4)` is

A

544

B

`32 sqrt15`

C

`64 sqrt15`

D

384

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^4 - y^4 \) given that \( x = \sqrt{5} + \sqrt{3} \) and \( y = \sqrt{5} - \sqrt{3} \). ### Step-by-Step Solution: 1. **Identify the expressions for \( x \) and \( y \)**: \[ x = \sqrt{5} + \sqrt{3} \] \[ y = \sqrt{5} - \sqrt{3} \] 2. **Use the difference of squares formula**: The expression \( x^4 - y^4 \) can be rewritten using the difference of squares: \[ x^4 - y^4 = (x^2 + y^2)(x^2 - y^2) \] 3. **Calculate \( x^2 \) and \( y^2 \)**: - For \( x^2 \): \[ x^2 = (\sqrt{5} + \sqrt{3})^2 = 5 + 3 + 2\sqrt{15} = 8 + 2\sqrt{15} \] - For \( y^2 \): \[ y^2 = (\sqrt{5} - \sqrt{3})^2 = 5 + 3 - 2\sqrt{15} = 8 - 2\sqrt{15} \] 4. **Calculate \( x^2 + y^2 \)**: \[ x^2 + y^2 = (8 + 2\sqrt{15}) + (8 - 2\sqrt{15}) = 8 + 8 = 16 \] 5. **Calculate \( x^2 - y^2 \)**: \[ x^2 - y^2 = (8 + 2\sqrt{15}) - (8 - 2\sqrt{15}) = 2\sqrt{15} + 2\sqrt{15} = 4\sqrt{15} \] 6. **Combine the results**: Now substitute back into the expression for \( x^4 - y^4 \): \[ x^4 - y^4 = (x^2 + y^2)(x^2 - y^2) = 16 \cdot 4\sqrt{15} = 64\sqrt{15} \] ### Final Answer: Thus, the value of \( x^4 - y^4 \) is: \[ \boxed{64\sqrt{15}} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If x =1 + sqrt2 + sqrt3 and y =1 + sqrt2 - sqrt3, then the value of (x ^(2) + 4xy + y ^(2))/(x + y) is:

If x=3sqrt(5)+2sqrt(2) and y=3sqrt(5)-2sqrt(2) , then the value of (x^(2)-y^(2))^(2) is

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If x = sqrt5 + sqrt3 and y = sqrt5 - sqrt3, then the value of x ^(4) -...

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |