Home
Class 14
MATHS
If (a ^(2) - b c)/( a ^(2 ) + bc)+ (b ^(...

If `(a ^(2) - b c)/( a ^(2 ) + bc)+ (b ^(2) -ca)/( b ^(2) + ca) + (c ^(2) - ab)/( c ^(2) + ab) =1,` then the value of `(a ^(2))/(a ^(2) + bc ) + (b ^(2))/(b ^(2) + ac) + (c ^(2))/( c ^(2) + ab)` is

A

`-1`

B

`2`

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{a^2 - bc}{a^2 + bc} + \frac{b^2 - ca}{b^2 + ca} + \frac{c^2 - ab}{c^2 + ab} = 1, \] we can start by rewriting each term in the left-hand side. ### Step 1: Rewrite each term We can express each fraction in a different form: \[ \frac{a^2 - bc}{a^2 + bc} = 1 - \frac{2bc}{a^2 + bc}, \] \[ \frac{b^2 - ca}{b^2 + ca} = 1 - \frac{2ca}{b^2 + ca}, \] \[ \frac{c^2 - ab}{c^2 + ab} = 1 - \frac{2ab}{c^2 + ab}. \] ### Step 2: Substitute back into the equation Substituting these into the original equation gives: \[ \left(1 - \frac{2bc}{a^2 + bc}\right) + \left(1 - \frac{2ca}{b^2 + ca}\right) + \left(1 - \frac{2ab}{c^2 + ab}\right) = 1. \] ### Step 3: Simplify the equation This simplifies to: \[ 3 - \left(\frac{2bc}{a^2 + bc} + \frac{2ca}{b^2 + ca} + \frac{2ab}{c^2 + ab}\right) = 1. \] ### Step 4: Isolate the sum of fractions Rearranging gives: \[ \frac{2bc}{a^2 + bc} + \frac{2ca}{b^2 + ca} + \frac{2ab}{c^2 + ab} = 2. \] ### Step 5: Divide by 2 Dividing the entire equation by 2 gives: \[ \frac{bc}{a^2 + bc} + \frac{ca}{b^2 + ca} + \frac{ab}{c^2 + ab} = 1. \] ### Step 6: Find the desired expression Now we need to find the value of: \[ \frac{a^2}{a^2 + bc} + \frac{b^2}{b^2 + ca} + \frac{c^2}{c^2 + ab}. \] ### Step 7: Rewrite the expression We can rewrite each term in the desired expression as follows: \[ \frac{a^2}{a^2 + bc} = 1 - \frac{bc}{a^2 + bc}, \] \[ \frac{b^2}{b^2 + ca} = 1 - \frac{ca}{b^2 + ca}, \] \[ \frac{c^2}{c^2 + ab} = 1 - \frac{ab}{c^2 + ab}. \] ### Step 8: Substitute back into the expression Substituting these into the desired expression gives: \[ \left(1 - \frac{bc}{a^2 + bc}\right) + \left(1 - \frac{ca}{b^2 + ca}\right) + \left(1 - \frac{ab}{c^2 + ab}\right). \] ### Step 9: Simplify the expression This simplifies to: \[ 3 - \left(\frac{bc}{a^2 + bc} + \frac{ca}{b^2 + ca} + \frac{ab}{c^2 + ab}\right). \] ### Step 10: Substitute the known value Since we found that \[ \frac{bc}{a^2 + bc} + \frac{ca}{b^2 + ca} + \frac{ab}{c^2 + ab} = 1, \] we can substitute this into our expression: \[ 3 - 1 = 2. \] ### Conclusion Thus, the value of \[ \frac{a^2}{a^2 + bc} + \frac{b^2}{b^2 + ca} + \frac{c^2}{c^2 + ab} = 2. \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If ab + bc + ca = 0, then what is the value of (a^(2))/(a^(2) - bc) + (b^(2))/(b^(2)-ca) + (c^(2))/(c^(2) - ab) ?

If a+b+c=0, then find the value of (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)

If a+b+c=0, then write the value of (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)

If a+b+c=0, then the value of ((a+b)^(2))/(ab)+((b+c)^(2))/(bc)+((c+a)^(2))/(ca) is

If a+b+c=0, the value of ((a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)) is

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If (a ^(2) - b c)/( a ^(2 ) + bc)+ (b ^(2) -ca)/( b ^(2) + ca) + (c ^(...

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |