Home
Class 14
MATHS
If (2 + sqrt3) a = (2 - sqrt3) b =1 the...

If `(2 + sqrt3) a = (2 - sqrt3) b =1 ` then the value of `(1)/(a) + (1)/(b)` is

A

1

B

2

C

`2sqrt3`

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: \[ (2 + \sqrt{3}) a = 1 \] \[ (2 - \sqrt{3}) b = 1 \] From these equations, we can express \(a\) and \(b\) in terms of constants. ### Step 1: Solve for \(a\) From the first equation, we can isolate \(a\): \[ a = \frac{1}{2 + \sqrt{3}} \] ### Step 2: Solve for \(b\) From the second equation, we can isolate \(b\): \[ b = \frac{1}{2 - \sqrt{3}} \] ### Step 3: Find \(\frac{1}{a}\) and \(\frac{1}{b}\) Now, we need to find \(\frac{1}{a}\) and \(\frac{1}{b}\): \[ \frac{1}{a} = 2 + \sqrt{3} \] \[ \frac{1}{b} = 2 - \sqrt{3} \] ### Step 4: Calculate \(\frac{1}{a} + \frac{1}{b}\) Now we can add these two fractions: \[ \frac{1}{a} + \frac{1}{b} = (2 + \sqrt{3}) + (2 - \sqrt{3}) \] ### Step 5: Simplify the expression When we simplify the expression: \[ \frac{1}{a} + \frac{1}{b} = 2 + \sqrt{3} + 2 - \sqrt{3} \] The \(\sqrt{3}\) terms cancel out: \[ \frac{1}{a} + \frac{1}{b} = 2 + 2 = 4 \] ### Final Answer Thus, the value of \(\frac{1}{a} + \frac{1}{b}\) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If x = (1)/(2 + sqrt3) , y = (1)/(2 - sqrt3) then the value of (1)/(x + 1) + (1)/(y +1) is :

If x = 1/(2+sqrt3) , y =1/(2-sqrt3) , then the value of 1/(x+1) +1/(y+1) is

If a = (2 + sqrt3)/(2 - sqrt3) and b = (2 - sqrt3)/(2 + sqrt3) , then the value of (a^(2) + b^(2) +ab) is :

If a=2+sqrt3 , then the value of (a^(2)+(1)/(a^(2))) is

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If (2 + sqrt3) a = (2 - sqrt3) b =1 then the value of (1)/(a) + (1)/(...

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |