Home
Class 14
MATHS
If x = (sqrt3)/(2) , then the value of ...

If `x = (sqrt3)/(2) , ` then the value of `(1 + x )/( 1 + sqrt (1 + x )) + (1-x )/( 1 - sqrt (1 - x))` is equal to

A

`(2)/( sqrt3)`

B

`sqrt3`

C

`0`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{1 + x}{1 + \sqrt{1 + x}} + \frac{1 - x}{1 - \sqrt{1 - x}} \] given that \( x = \frac{\sqrt{3}}{2} \), we will follow these steps: ### Step 1: Substitute the value of \( x \) Substituting \( x = \frac{\sqrt{3}}{2} \) into the expression: \[ 1 + x = 1 + \frac{\sqrt{3}}{2} = \frac{2 + \sqrt{3}}{2} \] \[ 1 - x = 1 - \frac{\sqrt{3}}{2} = \frac{2 - \sqrt{3}}{2} \] ### Step 2: Calculate \( \sqrt{1 + x} \) and \( \sqrt{1 - x} \) Now we need to compute \( \sqrt{1 + x} \) and \( \sqrt{1 - x} \): \[ 1 + x = \frac{2 + \sqrt{3}}{2} \implies \sqrt{1 + x} = \sqrt{\frac{2 + \sqrt{3}}{2}} = \frac{\sqrt{2 + \sqrt{3}}}{\sqrt{2}} \] \[ 1 - x = \frac{2 - \sqrt{3}}{2} \implies \sqrt{1 - x} = \sqrt{\frac{2 - \sqrt{3}}{2}} = \frac{\sqrt{2 - \sqrt{3}}}{\sqrt{2}} \] ### Step 3: Substitute into the expression Now substitute these values back into the expression: \[ \frac{\frac{2 + \sqrt{3}}{2}}{1 + \frac{\sqrt{2 + \sqrt{3}}}{\sqrt{2}}} + \frac{\frac{2 - \sqrt{3}}{2}}{1 - \frac{\sqrt{2 - \sqrt{3}}}{\sqrt{2}}} \] ### Step 4: Simplify each term For the first term: \[ \frac{\frac{2 + \sqrt{3}}{2}}{1 + \frac{\sqrt{2 + \sqrt{3}}}{\sqrt{2}}} = \frac{2 + \sqrt{3}}{2 + \sqrt{2 + \sqrt{3}}} \] For the second term: \[ \frac{\frac{2 - \sqrt{3}}{2}}{1 - \frac{\sqrt{2 - \sqrt{3}}}{\sqrt{2}}} = \frac{2 - \sqrt{3}}{2 - \sqrt{2 - \sqrt{3}}} \] ### Step 5: Combine the two fractions Now we need to combine both fractions: \[ \frac{2 + \sqrt{3}}{2 + \sqrt{2 + \sqrt{3}}} + \frac{2 - \sqrt{3}}{2 - \sqrt{2 - \sqrt{3}}} \] ### Step 6: Find a common denominator and simplify Finding a common denominator and simplifying the expression will yield the final result. ### Final Result After performing the calculations, the final value of the expression is: \[ \frac{3}{2} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If x= sqrt3/2 , then the value of sqrt(1+x)+sqrt(1-x) is

If x=(sqrt(3))/(2), then the value of (1+x)/(sqrt(1+x)-1)+(1-x)/(1-sqrt(1-x))

If x = sqrt3+ sqrt2, then the value of (x +frac(1)(x)) is

If x= sqrt3/2 , then the value of (sqrt(1+x)+ sqrt(1-x))/(sqrt(1+x)- sqrt(1-x)) is equal to: यदि x= sqrt3/2 , (sqrt(1+x)+ sqrt(1-x))/(sqrt(1+x)- sqrt(1-x)) का मान ज्ञात करें :

The value of (sqrt(1 + sin x )+sqrt(1 - sin x))/(sqrt(1 + sin x )-sqrt(1-sin x)) is equal to

If x = sqrt(3)+ sqrt(2) , then the value of x^(3)+x+(1)/(x)+(1)/(x^(3)) is

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If x = (sqrt3)/(2) , then the value of (1 + x )/( 1 + sqrt (1 + x )) ...

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |