Home
Class 14
MATHS
If 2x + (2)/(x) =1, then the value of x...

If `2x + (2)/(x) =1,` then the value of `x ^(3) + (1)/(x ^(3)) ` is

A

`(13)/(8)`

B

` -(11)/(8)`

C

`(11)/(8)`

D

`- (13)/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2x + \frac{2}{x} = 1 \) and find the value of \( x^3 + \frac{1}{x^3} \), we can follow these steps: ### Step 1: Simplify the original equation Start with the equation: \[ 2x + \frac{2}{x} = 1 \] To eliminate the fraction, multiply both sides by \( x \) (assuming \( x \neq 0 \)): \[ 2x^2 + 2 = x \] ### Step 2: Rearrange the equation Rearranging gives us a standard quadratic form: \[ 2x^2 - x + 2 = 0 \] ### Step 3: Use the quadratic formula To solve the quadratic equation \( 2x^2 - x + 2 = 0 \), we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 2 \), \( b = -1 \), and \( c = 2 \). Plugging in these values: \[ x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 2 \cdot 2}}{2 \cdot 2} \] \[ x = \frac{1 \pm \sqrt{1 - 16}}{4} \] \[ x = \frac{1 \pm \sqrt{-15}}{4} \] ### Step 4: Identify the roots Since the discriminant \( 1 - 16 = -15 \) is negative, the roots are complex: \[ x = \frac{1 \pm i\sqrt{15}}{4} \] ### Step 5: Find \( x + \frac{1}{x} \) To find \( x^3 + \frac{1}{x^3} \), we first need \( x + \frac{1}{x} \). We can calculate \( \frac{1}{x} \): \[ \frac{1}{x} = \frac{4}{1 \pm i\sqrt{15}} \] To rationalize, multiply numerator and denominator by the conjugate: \[ \frac{1}{x} = \frac{4(1 \mp i\sqrt{15})}{(1)^2 + (15)} = \frac{4(1 \mp i\sqrt{15})}{16} = \frac{1 \mp i\sqrt{15}}{4} \] Thus, \[ x + \frac{1}{x} = \frac{1 + i\sqrt{15}}{4} + \frac{1 - i\sqrt{15}}{4} = \frac{2}{4} = \frac{1}{2} \] ### Step 6: Calculate \( x^3 + \frac{1}{x^3} \) Using the identity: \[ x^3 + \frac{1}{x^3} = \left(x + \frac{1}{x}\right)^3 - 3\left(x + \frac{1}{x}\right) \] Substituting \( x + \frac{1}{x} = \frac{1}{2} \): \[ x^3 + \frac{1}{x^3} = \left(\frac{1}{2}\right)^3 - 3\left(\frac{1}{2}\right) \] \[ = \frac{1}{8} - \frac{3}{2} \] \[ = \frac{1}{8} - \frac{12}{8} = -\frac{11}{8} \] Thus, the value of \( x^3 + \frac{1}{x^3} \) is: \[ \boxed{-\frac{11}{8}} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If x ^(2) - 3 sqrt2 x +1 = 0, then the value of x ^(3) + (1)/(x ^(3)) is :

If (x+(1)/(x))=3, then the value of (x^(2)+(1)/(x^(2))) is:

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If 2x + (2)/(x) =1, then the value of x ^(3) + (1)/(x ^(3)) is

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |