Home
Class 14
MATHS
If x = (sqrt2-1 ) ^(-(1)/(2)) then the v...

If `x = (sqrt2-1 ) ^(-(1)/(2))` then the value of `(x ^(2) - (1)/(x ^(2))) ` is

A

2

B

`-2 sqrt2`

C

`2 sqrt2`

D

`-sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given expression for \( x \): \[ x = (\sqrt{2} - 1)^{-\frac{1}{2}} \] ### Step 1: Rewrite \( x \) We can rewrite \( x \) as: \[ x = \frac{1}{\sqrt{\sqrt{2} - 1}} \] ### Step 2: Calculate \( x^2 \) Now, we square \( x \): \[ x^2 = \left(\frac{1}{\sqrt{\sqrt{2} - 1}}\right)^2 = \frac{1}{\sqrt{2} - 1} \] ### Step 3: Find \( \frac{1}{x^2} \) Next, we find \( \frac{1}{x^2} \): \[ \frac{1}{x^2} = \sqrt{2} - 1 \] ### Step 4: Calculate \( x^2 - \frac{1}{x^2} \) Now, we can find \( x^2 - \frac{1}{x^2} \): \[ x^2 - \frac{1}{x^2} = \frac{1}{\sqrt{2} - 1} - (\sqrt{2} - 1) \] ### Step 5: Simplify the expression To simplify this expression, we need a common denominator: \[ x^2 - \frac{1}{x^2} = \frac{1 - (\sqrt{2} - 1)(\sqrt{2} - 1)}{\sqrt{2} - 1} \] Calculating \( (\sqrt{2} - 1)(\sqrt{2} - 1) \): \[ (\sqrt{2} - 1)(\sqrt{2} - 1) = 2 - 2\sqrt{2} + 1 = 3 - 2\sqrt{2} \] Substituting back, we have: \[ x^2 - \frac{1}{x^2} = \frac{1 - (3 - 2\sqrt{2})}{\sqrt{2} - 1} = \frac{1 - 3 + 2\sqrt{2}}{\sqrt{2} - 1} = \frac{-2 + 2\sqrt{2}}{\sqrt{2} - 1} \] ### Step 6: Factor out the common term Factoring out the common term in the numerator: \[ = \frac{2(\sqrt{2} - 1)}{\sqrt{2} - 1} \] ### Step 7: Cancel the common terms Since \( \sqrt{2} - 1 \) is not zero, we can cancel it out: \[ = 2 \] Thus, the final value of \( x^2 - \frac{1}{x^2} \) is: \[ \boxed{2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If x=(1)/(3-2sqrt(2)) ,then the value of ((1)/(x))^(2) is

If x=1+sqrt(2), then the value of (x-(1)/(x))^(2) is

Knowledge Check

  • If x= (1)/((sqrt2 +1)) then the value of x ^(2) + 2x - 1 is

    A
    `2 sqrt2`
    B
    4
    C
    0
    D
    2
  • If x - (1)/( x) = sqrt21, then the value of (x ^(2) + (1)/( x ^(2))) (x + (1)/(x)) is

    A
    113
    B
    115
    C
    114
    D
    None of these
  • If 2x = sqrt(a) - (1)/(sqrt(a)) , then the value of (sqrt(x^(2) + 1))/(x + sqrt(x^(2) +1)) is

    A
    a+1
    B
    `(1)/(2)((a+1)/(a))`
    C
    `(1)/(2) ((a-1)/(a))`
    D
    `a-1`
  • Similar Questions

    Explore conceptually related problems

    If x = sqrt2 + 1 then value of x ^(3) - (1)/(x ^(3)) is

    If x = sqrt2 + 1, then the value of x ^(4) - 1// x ^(4) is

    If x ^(2) - 3 sqrt2 x +1 = 0, then the value of x ^(3) + (1)/(x ^(3)) is :

    If x = ( sqrt(2) + 1)/(sqrt(2) - 1), y = ( sqrt(2) - 1)/( sqrt(2) + 1) then the value of ( x^(2) + 6xy + y^(2))/(x^(2) - 6xy + y^(2)) is

    If x=2+sqrt(3) , then the value of (x^(2)-x+1)/(x^(2)+x+1) is :