Home
Class 14
MATHS
If a ^(2) + (1)/( a ^(2)) = 7 and V (1) ...

If `a ^(2) + (1)/( a ^(2)) = 7 and V _(1) and V _(2)` are the minimum and the maximum values of `a ^(3) + (1)/(a ^(3)),`then `V _(2) - V _(1)` is equal to ?

A

`- 36`

B

36

C

72

D

`-18`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the difference between the maximum and minimum values of \( a^3 + \frac{1}{a^3} \) given that \( a^2 + \frac{1}{a^2} = 7 \). ### Step-by-Step Solution: 1. **Start with the given equation**: \[ a^2 + \frac{1}{a^2} = 7 \] 2. **Use the identity for \( a + \frac{1}{a} \)**: Recall that: \[ \left(a + \frac{1}{a}\right)^2 = a^2 + 2 + \frac{1}{a^2} \] Therefore, \[ a^2 + \frac{1}{a^2} = \left(a + \frac{1}{a}\right)^2 - 2 \] Substituting the value we have: \[ 7 = \left(a + \frac{1}{a}\right)^2 - 2 \] Rearranging gives: \[ \left(a + \frac{1}{a}\right)^2 = 9 \] 3. **Solve for \( a + \frac{1}{a} \)**: Taking the square root: \[ a + \frac{1}{a} = 3 \quad \text{or} \quad a + \frac{1}{a} = -3 \] 4. **Calculate \( a^3 + \frac{1}{a^3} \)**: We can use the identity: \[ a^3 + \frac{1}{a^3} = \left(a + \frac{1}{a}\right)^3 - 3\left(a + \frac{1}{a}\right) \] - For \( a + \frac{1}{a} = 3 \): \[ a^3 + \frac{1}{a^3} = 3^3 - 3 \cdot 3 = 27 - 9 = 18 \] - For \( a + \frac{1}{a} = -3 \): \[ a^3 + \frac{1}{a^3} = (-3)^3 - 3 \cdot (-3) = -27 + 9 = -18 \] 5. **Identify the minimum and maximum values**: - Maximum value \( V_2 = 18 \) - Minimum value \( V_1 = -18 \) 6. **Calculate the difference**: \[ V_2 - V_1 = 18 - (-18) = 18 + 18 = 36 \] ### Final Answer: Thus, \( V_2 - V_1 = 36 \).
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

(V + 1) / (V (2V + 1)) dv = - (1) / (x) dx

(v) (1-i) ^ (2) (1 + i) - (3-4i) ^ (2)

Find the value of v : 10 (1)/(2) - [8(1)/(2) + { 7 - bar(6-4)}] bar(6-4) =2 (v)

The electric field in a region of space is given as bar(E)=(5xhat i-2hat j) .Potential at point x=1 y=1 is V_(1) and potential at point (x=2 y=3) is V_(2) .Then V_(1) -V_(2) is equal to

From the above figure the values of stopping potentials for M_(1) and M_(2) for a frequency v_(3)( gt v_(02)) of the incident radiatioins are V_(1) and V_(2) respectively. Then the slope of the line is equal to

If |vec(V)_(1)+vec(V)_(2)|=|vec(V)_(1)-vec(V)_(2)|and V_(2) is finite, then

The electric field in a region of space is given as bar(E)=(5xhat i-2hat j) .Potential at point x =1 y =1 is V_(1) and potential at point x =2 y =3 is V_(2) .Then V_(1)-V_(2) is equal to

Two batteries V_(1) and V_(2) are connected to three resistors as shown below. If V_(1) = 2V and V_(2) = 0 V, the current I = 3 mA. If V_(1) = 0 V and V_(2) = 4V, the current I = 4mA. Now, if V_(1) = 10 V and V_(2) = 10 V, the current I will be-

Find the currents in the Y connection of 3 resistances R_(1) = 10Omega , R_(2)=20Omega and R_(3)= 30 Omega . When the terminals of R_(1) , R_(3) and R_(3) are maintained at potentials V_(1) = 10V, V_(2) =6V and V_(3) = 15V.

If u_(1), u_(2) and v_(1), v_(2) are the initial and final velocities of two particles before and after collision respectively, then (v_(2)-v_(1))/(u_(1)-u_(2)) is called ___________.

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If a ^(2) + (1)/( a ^(2)) = 7 and V (1) and V (2) are the minimum and...

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |