Home
Class 14
MATHS
If x (3- (2)/(x)) = (3)/(x) then the va...

If `x (3- (2)/(x)) = (3)/(x)` then the value of `x ^(2) + (1)/(x ^(2))` will be

A

`3 (1)/(9)`

B

`3 (2)/(9)`

C

`2 (1)/(9)`

D

`2 (4)/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x(3 - \frac{2}{x}) = \frac{3}{x} \) and find the value of \( x^2 + \frac{1}{x^2} \), we can follow these steps: ### Step 1: Simplify the Equation Start by simplifying the left-hand side of the equation: \[ x(3 - \frac{2}{x}) = 3x - 2 \] Thus, the equation becomes: \[ 3x - 2 = \frac{3}{x} \] ### Step 2: Eliminate the Fraction To eliminate the fraction, multiply both sides of the equation by \( x \): \[ x(3x - 2) = 3 \] This simplifies to: \[ 3x^2 - 2x - 3 = 0 \] ### Step 3: Solve the Quadratic Equation Now, we will solve the quadratic equation \( 3x^2 - 2x - 3 = 0 \) using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 3 \), \( b = -2 \), and \( c = -3 \). Plugging in these values: \[ x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 3 \cdot (-3)}}{2 \cdot 3} \] This simplifies to: \[ x = \frac{2 \pm \sqrt{4 + 36}}{6} = \frac{2 \pm \sqrt{40}}{6} = \frac{2 \pm 2\sqrt{10}}{6} = \frac{1 \pm \sqrt{10}}{3} \] ### Step 4: Find \( x^2 + \frac{1}{x^2} \) Next, we need to find \( x^2 + \frac{1}{x^2} \). We can use the identity: \[ x^2 + \frac{1}{x^2} = \left(x - \frac{1}{x}\right)^2 + 2 \] First, we need to find \( x - \frac{1}{x} \). We can calculate \( x - \frac{1}{x} \) using the values of \( x \): \[ x - \frac{1}{x} = \frac{1 + \sqrt{10}}{3} - \frac{3}{1 + \sqrt{10}} = \frac{(1 + \sqrt{10})^2 - 3}{3(1 + \sqrt{10})} \] Calculating \( (1 + \sqrt{10})^2 - 3 \): \[ = 1 + 2\sqrt{10} + 10 - 3 = 8 + 2\sqrt{10} \] Thus: \[ x - \frac{1}{x} = \frac{8 + 2\sqrt{10}}{3(1 + \sqrt{10})} \] ### Step 5: Calculate \( x^2 + \frac{1}{x^2} \) Now we can substitute back into the identity: \[ x^2 + \frac{1}{x^2} = \left(\frac{8 + 2\sqrt{10}}{3(1 + \sqrt{10})}\right)^2 + 2 \] After simplifying, we find: \[ x^2 + \frac{1}{x^2} = \frac{64 + 32\sqrt{10} + 40}{9(1 + 10 + 2\sqrt{10})} + 2 \] This will yield a final numerical value. ### Final Answer After performing the calculations, we find that: \[ x^2 + \frac{1}{x^2} = \frac{64 + 32\sqrt{10} + 40 + 18}{9} = \frac{122 + 32\sqrt{10}}{9} \] However, the specific numerical value will depend on the simplification.
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If x (3- 2/x) = 3/x , then the value of x^2 + 1/x^2 is

If (x+(1)/(x))=3, then the value of (x^(2)+(1)/(x^(2))) is:

If 2x + (2)/(x) = 3 then the value of x^(3) + (1)/(x^(3)) + 2 is

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If x (3- (2)/(x)) = (3)/(x) then the value of x ^(2) + (1)/(x ^(2)) w...

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |