Home
Class 14
MATHS
If (a ^(2) + b ^(2))/(c ^(2)) = (b ^(2) ...

If `(a ^(2) + b ^(2))/(c ^(2)) = (b ^(2) + c ^(2))/( a ^(2)) = (c ^(2) + a ^(2))/(b ^(2)) = (1)/(k) (k ne 0)` then k = ?

A

0

B

1

C

2

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in the problem, we start with the following equalities: \[ \frac{a^2 + b^2}{c^2} = \frac{b^2 + c^2}{a^2} = \frac{c^2 + a^2}{b^2} = \frac{1}{k} \quad (k \neq 0) \] Let's denote the common value as \( \frac{1}{k} \). ### Step 1: Set up the equations From the first equality, we can write: \[ \frac{a^2 + b^2}{c^2} = \frac{1}{k} \implies a^2 + b^2 = \frac{c^2}{k} \quad \text{(Equation 1)} \] From the second equality: \[ \frac{b^2 + c^2}{a^2} = \frac{1}{k} \implies b^2 + c^2 = \frac{a^2}{k} \quad \text{(Equation 2)} \] From the third equality: \[ \frac{c^2 + a^2}{b^2} = \frac{1}{k} \implies c^2 + a^2 = \frac{b^2}{k} \quad \text{(Equation 3)} \] ### Step 2: Add all three equations Now, we will add all three equations together: \[ (a^2 + b^2) + (b^2 + c^2) + (c^2 + a^2) = \frac{c^2}{k} + \frac{a^2}{k} + \frac{b^2}{k} \] This simplifies to: \[ 2(a^2 + b^2 + c^2) = \frac{(a^2 + b^2 + c^2)}{k} \] ### Step 3: Factor out \( (a^2 + b^2 + c^2) \) Assuming \( a^2 + b^2 + c^2 \neq 0 \) (which is valid since \( a, b, c \) are non-zero), we can divide both sides by \( (a^2 + b^2 + c^2) \): \[ 2 = \frac{1}{k} \] ### Step 4: Solve for \( k \) Rearranging gives: \[ k = \frac{1}{2} \] Thus, the value of \( k \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

The locus of the point (h,k) from which the tangent can be drawn to the different branches of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 is (A) (k^(2))/(b^(2))-(h^(2))/(a^(2)) 0 (C) (k^(2))/(b^(2))-(h^(2))/(a^(2))=0( D) none of these

If a, b, c are non zero complex numbers satisfying a^(2) + b^(2) + c^(2) = 0 and |(b^(2) + c^(2),ab,ac),(ab,c^(2) + a^(2),bc),(ac,bc,a^(2) + b^(2))| = k a^(2) b^(2) c^(2) , then k is equal to

If (a^(2)+c^(2))/(a+c)=(b^(2)+c^(2))/(b+c)=k then value of k could be

If a^(2) + b^(2) + c^(2) = 0 and |(b^(2) + c^(2) ,ab,ac),(ab,c^(2) + a^(2),bc),(ac,bc,a^(2) + b^(2))| = k a^(2) b^(2) c^(2) , then the value of k is

a^(2),b^(2),c^(2)(a+1)^(2),(b+1)^(2),(c+1)^(2)(a-1)^(2),(b-1)^(2),(c-1)^(2) then find the value of k

If |{:(bc-a^(2),ac-b^(2),ab-c^(2)),(ac-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ac-b^(2)):}|=k(a^(3)+b^(3)+c^(3)-3abc)^(l) then the value of (k, l) is

If a^(x) = b , b^(y) = c, c^(z) = a, x = log_(b) a^(k_(1)) , y = log_(c)b^(k_(2)), z = log _(a) c^(k_(3)), , then find K_(1) K_(2) K_(3) .

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If (a ^(2) + b ^(2))/(c ^(2)) = (b ^(2) + c ^(2))/( a ^(2)) = (c ^(2) ...

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |