Home
Class 14
MATHS
If cot theta = 4, then the velue of (5 s...

If `cot theta = 4,` then the velue of `(5 sin theta + 3 cos theta)/(5 sin theta - 3 cos theta )`

A

`1/9`

B

`1/3`

C

`3`

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given information: **Given:** \( \cot \theta = 4 \) We know that: \[ \cot \theta = \frac{\cos \theta}{\sin \theta} \] From this, we can express \( \cos \theta \) in terms of \( \sin \theta \): \[ \cos \theta = 4 \sin \theta \] Now, we need to find the value of: \[ \frac{5 \sin \theta + 3 \cos \theta}{5 \sin \theta - 3 \cos \theta} \] **Step 1:** Substitute \( \cos \theta \) in the expression. Using \( \cos \theta = 4 \sin \theta \), we can substitute this into the expression: \[ \frac{5 \sin \theta + 3(4 \sin \theta)}{5 \sin \theta - 3(4 \sin \theta)} \] **Step 2:** Simplify the numerator and the denominator. The numerator becomes: \[ 5 \sin \theta + 12 \sin \theta = 17 \sin \theta \] The denominator becomes: \[ 5 \sin \theta - 12 \sin \theta = -7 \sin \theta \] So, we can rewrite the expression as: \[ \frac{17 \sin \theta}{-7 \sin \theta} \] **Step 3:** Cancel \( \sin \theta \) (assuming \( \sin \theta \neq 0 \)). This simplifies to: \[ \frac{17}{-7} = -\frac{17}{7} \] Thus, the final answer is: \[ -\frac{17}{7} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If 3 cot theta = 4 , then the value of (5 sin theta+ 3 cos theta)/(5 sin theta - 3 cos theta) is

If 3 cot theta = 4 , find the value of (5 sin theta - 3 cos theta)/(5 sin theta + 3 cos theta) .

Knowledge Check

  • If 5 cot theta = 3 ," find the value of "((5sin theta - 3 cos theta )/(4 sin theta + 3 cos theta)).

    A
    `(11)/(29)`
    B
    `(16)/(19)`
    C
    `(16)/(29)`
    D
    `(34)/(29)`
  • If tan theta = (5)/(4) , then the value of ((3 sin theta + 4 cos theta)/(3 sin theta - 4 cos theta))^(2) is

    A
    `31^(2)`
    B
    `30^(2)`
    C
    `17^(2)`
    D
    `7^(2)`
  • Similar Questions

    Explore conceptually related problems

    If 5 tan theta =4 then find the value of (5 sin theta - cos theta)/(sin theta + 3 cos theta)

    If 5 tan theta =4, find the value of (5 sin theta - 3 cos theta)/(5 sin theta +2 cos theta)

    If 5 tan theta = 3, then what is the value of ((5 sin theta - 3 cos theta)/(4 sin theta + 3 cos theta)) ?

    if 5cot theta=4, then the value of ((5sin theta-3cos theta)/(sin theta+2cos theta))

    If 5tan theta=4 then value of ((5sin theta-3cos theta)/(5sin theta+3cos theta))=

    If 5 sin theta-4 cos theta=0, 0^@ < theta<90^@ , then the value of (5sin theta-2 cos theta)/(5sin theta+3 cos theta) is: