Home
Class 14
MATHS
If m + n =1, then the value of m ^(3) + ...

If `m + n =1,` then the value of `m ^(3) + n ^(3) + 3 mn`

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( m^3 + n^3 + 3mn \) given that \( m + n = 1 \). ### Step-by-Step Solution: 1. **Use the identity for the sum of cubes**: We can use the identity: \[ m^3 + n^3 + 3mn = (m+n)(m^2 - mn + n^2) \] However, we can also use another identity: \[ m^3 + n^3 = (m+n)(m^2 - mn + n^2) \] This means we can express \( m^3 + n^3 + 3mn \) in terms of \( m+n \). 2. **Substitute \( m+n \)**: Since we know \( m + n = 1 \), we can substitute this into the identity: \[ m^3 + n^3 + 3mn = (m+n)((m+n)^2 - 3mn) \] Substituting \( m+n = 1 \): \[ m^3 + n^3 + 3mn = 1 \cdot (1^2 - 3mn) = 1 - 3mn \] 3. **Find \( mn \)**: We need to express \( mn \) in terms of \( m+n \). We know that: \[ (m+n)^2 = m^2 + 2mn + n^2 \] Therefore: \[ 1^2 = m^2 + n^2 + 2mn \] This simplifies to: \[ 1 = m^2 + n^2 + 2mn \] We can express \( m^2 + n^2 \) using the identity: \[ m^2 + n^2 = (m+n)^2 - 2mn = 1 - 2mn \] Substituting this back gives: \[ 1 = (1 - 2mn) + 2mn \] This means: \[ 1 = 1 \] which is always true, indicating we need more information about \( mn \). 4. **Conclusion**: Since we have \( m+n = 1 \) and we cannot determine \( mn \) without additional information, we can conclude: \[ m^3 + n^3 + 3mn = 1 - 3mn \] However, if we assume \( mn = 0 \) (which is true if either \( m \) or \( n \) is 0), we can find: \[ m^3 + n^3 + 3mn = 1 - 0 = 1 \] Therefore, the value of \( m^3 + n^3 + 3mn \) is \( 1 \). ### Final Answer: The value of \( m^3 + n^3 + 3mn \) is \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If m=- 4 , n=-2 then the value of m^3 - 3m^2 + 3m + 3n + 3n^2 + n^3 is

If 6m-n=3m+7n , then find the value of (m^(2))/(n^(2))

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If m + n =1, then the value of m ^(3) + n ^(3) + 3 mn

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |