Home
Class 14
MATHS
If a ^(2) + 1 =9a, (a ne 0) then the val...

If `a ^(2) + 1 =9a, (a ne 0)` then the value of `(a) ^(2) + (1)/((a) ^(2))`

A

81

B

18

C

79

D

83

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: 1. **Given Equation**: \[ a^2 + 1 = 9a \] 2. **Rearranging the Equation**: We can rearrange this equation to isolate \(a^2\): \[ a^2 - 9a + 1 = 0 \] 3. **Finding \( \frac{1}{a^2} \)**: We need to find the value of \( a^2 + \frac{1}{a^2} \). To do this, we can first find \( a + \frac{1}{a} \). 4. **Dividing the Original Equation**: From the original equation, we can express \(a + \frac{1}{a}\): \[ a + \frac{1}{a} = 9 \] 5. **Squaring Both Sides**: Now, we square both sides to find \( a^2 + \frac{1}{a^2} \): \[ \left(a + \frac{1}{a}\right)^2 = 9^2 \] This expands to: \[ a^2 + 2 + \frac{1}{a^2} = 81 \] 6. **Isolating \( a^2 + \frac{1}{a^2} \)**: Now, we can isolate \( a^2 + \frac{1}{a^2} \): \[ a^2 + \frac{1}{a^2} = 81 - 2 \] Simplifying gives: \[ a^2 + \frac{1}{a^2} = 79 \] Thus, the final value of \( a^2 + \frac{1}{a^2} \) is: \[ \boxed{79} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

Find the value of (1/9)^(-1/2)

If 5a+ (1)/(3a) = 5 , then the value of 9a^(2)+(1)/(25a^(2)) is

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If a ^(2) + 1 =9a, (a ne 0) then the value of (a) ^(2) + (1)/((a) ^(2)...

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |