Home
Class 14
MATHS
If a + b = 2c, then the value (a)/(a -c)...

If `a + b = 2c,` then the value `(a)/(a -c) + (c)/( b -c)` is equal to (where ` a ne b ne c`)

A

`-1`

B

1

C

0

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \(\frac{a}{a - c} + \frac{c}{b - c}\) given that \(a + b = 2c\). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ a + b = 2c \] 2. **Rearrange the equation to express \(b\) in terms of \(a\) and \(c\):** \[ b = 2c - a \] 3. **Substitute \(b\) into the expression:** We need to find: \[ \frac{a}{a - c} + \frac{c}{b - c} \] Substitute \(b = 2c - a\) into the second term: \[ \frac{c}{(2c - a) - c} = \frac{c}{c - a} \] 4. **Rewrite the expression:** Now we have: \[ \frac{a}{a - c} + \frac{c}{c - a} \] 5. **Find a common denominator:** The common denominator for the two fractions is \((a - c)(c - a)\). Notice that \(c - a = -(a - c)\), so we can rewrite the expression: \[ \frac{a(c - a) + c(a - c)}{(a - c)(c - a)} \] This simplifies to: \[ \frac{a(c - a) - c(a - c)}{(a - c)(c - a)} \] 6. **Simplify the numerator:** Expanding the numerator: \[ ac - a^2 - ac + c^2 = c^2 - a^2 \] Thus, we have: \[ \frac{c^2 - a^2}{(a - c)(c - a)} = \frac{(c - a)(c + a)}{(a - c)(c - a)} \] 7. **Cancel out the common terms:** Since \((c - a) = -(a - c)\), we can cancel: \[ \frac{(c + a)}{-1} = -(c + a) \] 8. **Final result:** Since \(a + b = 2c\), we can replace \(c + a\) with \(b\): \[ -(c + a) = -b \] Thus, the value of the expression \(\frac{a}{a - c} + \frac{c}{b - c}\) is equal to \(-b\).
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

The value of [[a-b , b-c ,c-a]] is equal to

If the vectors vecalpha = a hati + hatj + hatk, vecbeta = hati + b hatj + hatk and vec gamma = hati + hatj + c hatk are coplanar, then prove that (1)/(1-a ) +(1)/(1-b)+ (1)/(1-c)=1 where a ne 1, b ne 1 and c ne 1

If c ne 0 and the equation (p)/(2x)=(a)/(x+c)+(b)/(x-c) has two equal roots, then p can be

The value of [a-b b-c c-a] is equal to

If the plane ax-by+cz=d contains the line (x-a)/(a)=(y-2d)/(b)=(z-c)/(c ) , then the value of (b)/(4d) is equal to (b, d ne 0)

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If a + b = 2c, then the value (a)/(a -c) + (c)/( b -c) is equal to (wh...

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |