Home
Class 14
MATHS
If x + (1)/(x) = 5, then the value of (x...

If `x + (1)/(x) = 5,` then the value of `(x)/(1 + x + x ^(2))` is

A

`1/5`

B

`1/6`

C

`5`

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x + \frac{1}{x} = 5 \) and find the value of \( \frac{x}{1 + x + x^2} \), we can follow these steps: ### Step 1: Solve for \( x \) We start with the equation: \[ x + \frac{1}{x} = 5 \] To eliminate the fraction, we can multiply both sides by \( x \): \[ x^2 + 1 = 5x \] Rearranging gives us a quadratic equation: \[ x^2 - 5x + 1 = 0 \] ### Step 2: Use the quadratic formula The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] For our equation \( x^2 - 5x + 1 = 0 \), we have \( a = 1 \), \( b = -5 \), and \( c = 1 \). Plugging these values into the formula: \[ x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} \] This simplifies to: \[ x = \frac{5 \pm \sqrt{25 - 4}}{2} \] \[ x = \frac{5 \pm \sqrt{21}}{2} \] ### Step 3: Find \( 1 + x + x^2 \) Next, we need to find \( 1 + x + x^2 \). We already have \( x^2 \) from our quadratic equation: \[ x^2 = 5x - 1 \] Now substituting this into \( 1 + x + x^2 \): \[ 1 + x + x^2 = 1 + x + (5x - 1) = 6x \] ### Step 4: Substitute back into the expression Now we can substitute \( 1 + x + x^2 \) into our original expression: \[ \frac{x}{1 + x + x^2} = \frac{x}{6x} = \frac{1}{6} \] ### Final Answer Thus, the value of \( \frac{x}{1 + x + x^2} \) is: \[ \frac{1}{6} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

x+(1)/(x)=5 Find the value of x

If x - (1)/(x) = 5 , then find the value of x^(2) + (1)/(x^(2)) .

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If x + (1)/(x) = 5, then the value of (x)/(1 + x + x ^(2)) is

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |