Home
Class 14
MATHS
If (a + b) ^(2) = 100 and (a - b) = 4 t...

If `(a + b) ^(2) = 100 and (a - b) = 4 ` then ab equal to:

A

116

B

84

C

21

D

53

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we have the equations: 1. \((a + b)^2 = 100\) 2. \(a - b = 4\) We need to find the value of \(ab\). ### Step 1: Simplify the first equation From the first equation, we can take the square root of both sides: \[ a + b = \sqrt{100} \] Calculating the square root: \[ a + b = 10 \] ### Step 2: Write down the equations Now we have two equations: 1. \(a + b = 10\) (Equation 1) 2. \(a - b = 4\) (Equation 2) ### Step 3: Add the two equations Next, we will add Equation 1 and Equation 2: \[ (a + b) + (a - b) = 10 + 4 \] This simplifies to: \[ 2a = 14 \] ### Step 4: Solve for \(a\) Now, divide both sides by 2 to find \(a\): \[ a = \frac{14}{2} = 7 \] ### Step 5: Substitute \(a\) back to find \(b\) Now that we have \(a\), we can substitute it back into Equation 1 to find \(b\): \[ 7 + b = 10 \] Subtract 7 from both sides: \[ b = 10 - 7 = 3 \] ### Step 6: Calculate \(ab\) Now we can find \(ab\): \[ ab = 7 \times 3 = 21 \] Thus, the value of \(ab\) is **21**.
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If (a - b) = 4 and ab = 2, then (a^3-b^3) is equal to: यदि (a - b) = 4 और ab = 2 है, तो (a^3-b^3) का मान ज्ञात करें |

If (5a - 3b) : (4a - 2b) = 2:3, then a:b is equal to: यदि (5a - 3b) : (4a - 2b) = 2:3 है, तो a : b का मान क्या होगा ?

If a+b=7 and ab = 12, then a^2+ b^2 is equal to:

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If (a + b) ^(2) = 100 and (a - b) = 4 then ab equal to:

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |