Home
Class 14
MATHS
If x = 3 + 2 sqrt2, then the value of x ...

If `x = 3 + 2 sqrt2,` then the value of `x ^(3) + (1)/(x ^(3)) and x ^(3) - (1)/(x ^(3))` ae respectively:

A

234216

B

216234

C

`198,140 sqrt2`

D

`140 sqrt2, 198`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( x^3 + \frac{1}{x^3} \) and \( x^3 - \frac{1}{x^3} \) given that \( x = 3 + 2\sqrt{2} \). ### Step 1: Find \( \frac{1}{x} \) First, we will find \( \frac{1}{x} \) by rationalizing it. \[ \frac{1}{x} = \frac{1}{3 + 2\sqrt{2}} \] To rationalize, we multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{1}{x} = \frac{1 \cdot (3 - 2\sqrt{2})}{(3 + 2\sqrt{2})(3 - 2\sqrt{2})} \] Calculating the denominator: \[ (3 + 2\sqrt{2})(3 - 2\sqrt{2}) = 3^2 - (2\sqrt{2})^2 = 9 - 8 = 1 \] Thus, \[ \frac{1}{x} = 3 - 2\sqrt{2} \] ### Step 2: Find \( x + \frac{1}{x} \) Now we can find \( x + \frac{1}{x} \): \[ x + \frac{1}{x} = (3 + 2\sqrt{2}) + (3 - 2\sqrt{2}) = 6 \] ### Step 3: Find \( x^3 + \frac{1}{x^3} \) Using the identity: \[ x^3 + \frac{1}{x^3} = \left( x + \frac{1}{x} \right)^3 - 3 \left( x + \frac{1}{x} \right) \] Substituting \( x + \frac{1}{x} = 6 \): \[ x^3 + \frac{1}{x^3} = 6^3 - 3 \cdot 6 \] Calculating \( 6^3 \): \[ 6^3 = 216 \] Now substituting back: \[ x^3 + \frac{1}{x^3} = 216 - 18 = 198 \] ### Step 4: Find \( x - \frac{1}{x} \) Next, we find \( x - \frac{1}{x} \): \[ x - \frac{1}{x} = (3 + 2\sqrt{2}) - (3 - 2\sqrt{2}) = 4\sqrt{2} \] ### Step 5: Find \( x^3 - \frac{1}{x^3} \) Using the identity: \[ x^3 - \frac{1}{x^3} = \left( x - \frac{1}{x} \right)^3 + 3 \left( x - \frac{1}{x} \right) \] Substituting \( x - \frac{1}{x} = 4\sqrt{2} \): \[ x^3 - \frac{1}{x^3} = (4\sqrt{2})^3 + 3(4\sqrt{2}) \] Calculating \( (4\sqrt{2})^3 \): \[ (4\sqrt{2})^3 = 64 \cdot 2\sqrt{2} = 128\sqrt{2} \] Now substituting back: \[ x^3 - \frac{1}{x^3} = 128\sqrt{2} + 12\sqrt{2} = 140\sqrt{2} \] ### Final Answer The values are: \[ x^3 + \frac{1}{x^3} = 198 \] \[ x^3 - \frac{1}{x^3} = 140\sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If x=2-sqrt(3) , then the values of x^(2)+(1)/(x^(2)) and x^(2)-(1)/(x^(2)) respectively are

If x=sqrt3 +sqrt2 then the value of of x^(3)-(1)/(x^(3)) is

If x ^(2) - 3 sqrt2 x +1 = 0, then the value of x ^(3) + (1)/(x ^(3)) is :

If x = sqrt3+ sqrt2, then the value of (x +frac(1)(x)) is

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If x = 3 + 2 sqrt2, then the value of x ^(3) + (1)/(x ^(3)) and x ^(3)...

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |