Home
Class 14
MATHS
If x + (2)/(x) =1, then the value fo (x ...

If `x + (2)/(x) =1,` then the value fo `(x ^(2) + x + 2)/( x ^(2) (1-x))` is :

A

`-1`

B

2

C

`-2`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x + \frac{2}{x} = 1 \) and find the value of \( \frac{x^2 + x + 2}{x^2(1-x)} \), we can follow these steps: ### Step 1: Solve for \( x \) Starting with the equation: \[ x + \frac{2}{x} = 1 \] Multiply both sides by \( x \) (assuming \( x \neq 0 \)): \[ x^2 + 2 = x \] Rearranging gives: \[ x^2 - x + 2 = 0 \] ### Step 2: Use the quadratic formula To find the roots of the quadratic equation \( x^2 - x + 2 = 0 \), we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = -1, c = 2 \): \[ x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1} \] \[ x = \frac{1 \pm \sqrt{1 - 8}}{2} \] \[ x = \frac{1 \pm \sqrt{-7}}{2} \] This indicates that \( x \) has complex solutions: \[ x = \frac{1 \pm i\sqrt{7}}{2} \] ### Step 3: Substitute \( x \) into the expression Now we need to evaluate: \[ \frac{x^2 + x + 2}{x^2(1-x)} \] First, we need to find \( x^2 \): Using \( x = \frac{1 + i\sqrt{7}}{2} \): \[ x^2 = \left(\frac{1 + i\sqrt{7}}{2}\right)^2 = \frac{(1 + i\sqrt{7})^2}{4} = \frac{1 + 2i\sqrt{7} - 7}{4} = \frac{-6 + 2i\sqrt{7}}{4} = \frac{-3 + i\sqrt{7}}{2} \] ### Step 4: Calculate \( x^2 + x + 2 \) Now we calculate \( x^2 + x + 2 \): \[ x^2 + x + 2 = \frac{-3 + i\sqrt{7}}{2} + \frac{1 + i\sqrt{7}}{2} + 2 \] Combining the terms: \[ = \frac{-3 + 1 + 2 + 2i\sqrt{7}}{2} = \frac{0 + 2i\sqrt{7}}{2} = i\sqrt{7} \] ### Step 5: Calculate \( 1 - x \) Now calculate \( 1 - x \): \[ 1 - x = 1 - \frac{1 + i\sqrt{7}}{2} = \frac{2 - (1 + i\sqrt{7})}{2} = \frac{1 - i\sqrt{7}}{2} \] ### Step 6: Substitute into the expression Now substitute \( x^2 \) and \( 1 - x \) into the expression: \[ \frac{i\sqrt{7}}{\left(\frac{-3 + i\sqrt{7}}{2}\right) \left(\frac{1 - i\sqrt{7}}{2}\right)} \] Calculating the denominator: \[ = \frac{-3(1) + 3(i\sqrt{7}) + (-i\sqrt{7})(1) + (i\sqrt{7})(-i\sqrt{7})}{4} = \frac{-3 + 2i\sqrt{7} + 7}{4} = \frac{4 + 2i\sqrt{7}}{4} = 1 + \frac{i\sqrt{7}}{2} \] ### Final Expression Thus, the overall expression simplifies to: \[ \frac{i\sqrt{7}}{1 + \frac{i\sqrt{7}}{2}} = 1 \] ### Conclusion The value of \( \frac{x^2 + x + 2}{x^2(1-x)} \) is \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If x - (1)/( x) = sqrt21, then the value of (x ^(2) + (1)/( x ^(2))) (x + (1)/(x)) is

If x(x-2)= 1 , then the value of x^(2) + (1)/(x^(2)) is .

If x + 1/x = 2 , then the value of x^2 + 1/(x^2) is :

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If x + (2)/(x) =1, then the value fo (x ^(2) + x + 2)/( x ^(2) (1-x)) ...

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |