Home
Class 14
MATHS
If x ^(2) -x sqrt 68 + 1=0 then what is...

If `x ^(2) -x sqrt 68 + 1=0` then
what is the value of `x - (1)/(x)` ?

A

`sqrt66`

B

8

C

`sqrt62`

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 - x\sqrt{68} + 1 = 0 \) and find the value of \( x - \frac{1}{x} \), we can follow these steps: ### Step 1: Solve the quadratic equation The given equation is: \[ x^2 - x\sqrt{68} + 1 = 0 \] We can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 1, b = -\sqrt{68}, c = 1 \). ### Step 2: Calculate the discriminant First, we calculate the discriminant \( b^2 - 4ac \): \[ b^2 = (-\sqrt{68})^2 = 68 \] \[ 4ac = 4 \cdot 1 \cdot 1 = 4 \] Thus, the discriminant is: \[ 68 - 4 = 64 \] ### Step 3: Find the roots using the quadratic formula Now we can substitute the values into the quadratic formula: \[ x = \frac{\sqrt{68} \pm \sqrt{64}}{2} \] Since \( \sqrt{64} = 8 \), we have: \[ x = \frac{\sqrt{68} \pm 8}{2} \] ### Step 4: Simplify the roots We can express \( \sqrt{68} \) as \( 2\sqrt{17} \): \[ x = \frac{2\sqrt{17} \pm 8}{2} \] This simplifies to: \[ x = \sqrt{17} \pm 4 \] So, the two possible values for \( x \) are: \[ x_1 = \sqrt{17} + 4 \quad \text{and} \quad x_2 = \sqrt{17} - 4 \] ### Step 5: Calculate \( \frac{1}{x} \) Now we need to find \( \frac{1}{x} \) for both cases. 1. For \( x_1 = \sqrt{17} + 4 \): \[ \frac{1}{x_1} = \frac{1}{\sqrt{17} + 4} \] To rationalize the denominator: \[ \frac{1}{x_1} = \frac{\sqrt{17} - 4}{(\sqrt{17} + 4)(\sqrt{17} - 4)} = \frac{\sqrt{17} - 4}{17 - 16} = \sqrt{17} - 4 \] 2. For \( x_2 = \sqrt{17} - 4 \): \[ \frac{1}{x_2} = \frac{1}{\sqrt{17} - 4} \] Rationalizing the denominator: \[ \frac{1}{x_2} = \frac{\sqrt{17} + 4}{(\sqrt{17} - 4)(\sqrt{17} + 4)} = \frac{\sqrt{17} + 4}{17 - 16} = \sqrt{17} + 4 \] ### Step 6: Calculate \( x - \frac{1}{x} \) Now we can find \( x - \frac{1}{x} \) for both cases. 1. For \( x_1 = \sqrt{17} + 4 \): \[ x_1 - \frac{1}{x_1} = (\sqrt{17} + 4) - (\sqrt{17} - 4) = 8 \] 2. For \( x_2 = \sqrt{17} - 4 \): \[ x_2 - \frac{1}{x_2} = (\sqrt{17} - 4) - (\sqrt{17} + 4) = -8 \] ### Conclusion Thus, the value of \( x - \frac{1}{x} \) can be either \( 8 \) or \( -8 \). However, since we are looking for the positive value, the answer is: \[ \boxed{8} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If x^(2)- 2sqrt(10)x+1=0 then what is the value of x- (1)/(x)?

If x ^(2) - 3 sqrt2 x +1 = 0, then the value of x ^(3) + (1)/(x ^(3)) is :

If x^2-2 sqrt5 x+1=0 , then what is the value of x^5+1/x^5 ? यदि x^2-2 sqrt5 x+1=0 है, तो x^5+1/x^5 का मान क्या होगा ?

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If x ^(2) -x sqrt 68 + 1=0 then what is the value of x - (1)/(x) ?

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |