Home
Class 14
MATHS
In the expression (px ^(3) - 8x ^(2) - q...

In the expression `(px ^(3) - 8x ^(2) - qx + 1),` then divisible by the expression `(3x ^(2) - 4x +1),` then what will be the vaue of p and q respectively ?

A

`(21//4, 15, 8)`

B

`(6,1)`

C

`(33//4, 5//4)`

D

`(1,6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( p \) and \( q \) such that the polynomial \( px^3 - 8x^2 - qx + 1 \) is divisible by \( 3x^2 - 4x + 1 \). ### Step-by-Step Solution: 1. **Identify the Roots of the Divisor**: The expression \( 3x^2 - 4x + 1 \) can be factored or solved using the quadratic formula. The roots can be found using: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 3 \), \( b = -4 \), and \( c = 1 \). \[ x = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} = \frac{4 \pm \sqrt{16 - 12}}{6} = \frac{4 \pm 2}{6} \] This gives us the roots: \[ x = 1 \quad \text{and} \quad x = \frac{1}{3} \] 2. **Set Up Equations Using the Roots**: Since \( px^3 - 8x^2 - qx + 1 \) must equal zero at these roots, we can substitute \( x = 1 \) and \( x = \frac{1}{3} \) into the polynomial. - **For \( x = 1 \)**: \[ p(1)^3 - 8(1)^2 - q(1) + 1 = 0 \] Simplifying this gives: \[ p - 8 - q + 1 = 0 \implies p - q - 7 = 0 \implies p - q = 7 \quad \text{(Equation 1)} \] - **For \( x = \frac{1}{3} \)**: \[ p\left(\frac{1}{3}\right)^3 - 8\left(\frac{1}{3}\right)^2 - q\left(\frac{1}{3}\right) + 1 = 0 \] Simplifying this gives: \[ \frac{p}{27} - \frac{8}{9} - \frac{q}{3} + 1 = 0 \] Multiplying through by 27 to eliminate the fractions: \[ p - 24 - 9q + 27 = 0 \implies p - 9q + 3 = 0 \implies p - 9q = -3 \quad \text{(Equation 2)} \] 3. **Solve the System of Equations**: Now we have two equations: - \( p - q = 7 \) (Equation 1) - \( p - 9q = -3 \) (Equation 2) We can solve these equations simultaneously. From Equation 1, we can express \( p \) in terms of \( q \): \[ p = q + 7 \] Substituting this into Equation 2: \[ (q + 7) - 9q = -3 \] Simplifying this: \[ 7 - 8q = -3 \implies -8q = -3 - 7 \implies -8q = -10 \implies q = \frac{5}{4} \] 4. **Find \( p \)**: Now substituting \( q \) back into Equation 1: \[ p - \frac{5}{4} = 7 \implies p = 7 + \frac{5}{4} = \frac{28}{4} + \frac{5}{4} = \frac{33}{4} \] ### Final Values: Thus, the values of \( p \) and \( q \) are: \[ p = \frac{33}{4}, \quad q = \frac{5}{4} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

The expression 2x^(3) + x ^(2) f- 2x -1 is divisible by x-1 then what is the value of f ?

If the expressions px^(3) + 3x^(2) - 3 and 2x^(3) - 5x+p when divided by x - 4 leave the same remainder, then what is the value of p ?

If the expression (px^(3)+x^(2)-2x-q) is divisible by (x-1)and(x+1) , what are the values of p and q respectively?

If the expression px^3 - qx^2 - 7x - 6 is completely divisible by x^2-x- 6 , what are the values of p and q respectively?

If the expression px^3 - 2x^2 - qx + 18 is completely divisible by (x^2- 9) , what are the ratio between p and q respectively?

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. In the expression (px ^(3) - 8x ^(2) - qx + 1), then divisible by the ...

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |