Home
Class 14
MATHS
If x ^(2) + y ^(2) + (1)/( x ^(2)) + (1)...

If `x ^(2) + y ^(2) + (1)/( x ^(2)) + (1)/ y ^(2) = 4,` then the value of `x ^(2) + y ^(2) ` is :

A

a. 2

B

b. 4

C

c. 8

D

d. 16

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 + y^2 + \frac{1}{x^2} + \frac{1}{y^2} = 4 \), we can start by letting \( a = x^2 \) and \( b = y^2 \). Thus, we can rewrite the equation as: \[ a + b + \frac{1}{a} + \frac{1}{b} = 4 \] Next, we can combine the terms involving \( a \) and \( b \): \[ a + b + \frac{1}{a} + \frac{1}{b} = a + b + \frac{a + b}{ab} \] This can be simplified to: \[ a + b + \frac{a + b}{ab} = 4 \] Let \( s = a + b \) and \( p = ab \). Then we can rewrite the equation as: \[ s + \frac{s}{p} = 4 \] Multiplying through by \( p \) gives: \[ sp + s = 4p \] Rearranging this yields: \[ sp - 4p + s = 0 \] Factoring out \( s \): \[ s(p + 1) = 4p \] Thus, we have: \[ s = \frac{4p}{p + 1} \] Now, we need to find the minimum value of \( s \). To do this, we can analyze the function \( s(p) = \frac{4p}{p + 1} \). To find the critical points, we can differentiate \( s \) with respect to \( p \): \[ s' = \frac{(p + 1)(4) - 4p(1)}{(p + 1)^2} = \frac{4}{(p + 1)^2} \] Setting \( s' = 0 \) does not yield any critical points since the numerator is a constant. However, we can analyze the behavior of \( s \) as \( p \) approaches certain limits. As \( p \to 0 \): \[ s \to 0 \] As \( p \to \infty \): \[ s \to 4 \] Thus, the maximum value of \( s \) occurs when \( p \) is large, and we can also check if \( s = 2 \) is achievable. Now, substituting \( s = 2 \) into the original equation: \[ 2 + \frac{2}{p} = 4 \implies \frac{2}{p} = 2 \implies p = 1 \] Thus, we have \( a + b = 2 \) and \( ab = 1 \). The values of \( a \) and \( b \) can be found by solving the quadratic equation: \[ t^2 - st + p = 0 \implies t^2 - 2t + 1 = 0 \] This gives: \[ (t - 1)^2 = 0 \implies t = 1 \] Thus, \( a = 1 \) and \( b = 1 \), which means: \[ x^2 + y^2 = a + b = 1 + 1 = 2 \] Therefore, the value of \( x^2 + y^2 \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

if x^(2)+y^(2)+(1)/(x^(2))+(1)/(y^(2))=4 then find the value of x^(2)+y^(2)

If x^2+y^2+frac (1) (x^2) + frac (1)(y^2)=4 then the value of x^2y^2 is

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If x ^(2) + y ^(2) + (1)/( x ^(2)) + (1)/ y ^(2) = 4, then the value o...

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |