Home
Class 14
MATHS
If 2x -1 lt 5x + 2 and 2x + 5 lt 6 - 3x,...

If `2x -1 lt 5x + 2 and 2x + 5 lt 6 - 3x,` then x can take which of the following values ?

A

1

B

0

C

2

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequalities given in the question, we will break it down step by step. ### Step 1: Solve the first inequality The first inequality is: \[ 2x - 1 < 5x + 2 \] To solve for \( x \), we will first isolate \( x \) on one side. 1. Subtract \( 2x \) from both sides: \[ -1 < 5x - 2x + 2 \] \[ -1 < 3x + 2 \] 2. Next, subtract 2 from both sides: \[ -1 - 2 < 3x \] \[ -3 < 3x \] 3. Now, divide both sides by 3: \[ -1 < x \] or \[ x > -1 \] ### Step 2: Solve the second inequality The second inequality is: \[ 2x + 5 < 6 - 3x \] Again, we will isolate \( x \): 1. Add \( 3x \) to both sides: \[ 2x + 3x + 5 < 6 \] \[ 5x + 5 < 6 \] 2. Subtract 5 from both sides: \[ 5x < 6 - 5 \] \[ 5x < 1 \] 3. Divide both sides by 5: \[ x < \frac{1}{5} \] ### Step 3: Combine the results From the two inequalities we have: 1. \( x > -1 \) 2. \( x < \frac{1}{5} \) This means that \( x \) must satisfy: \[ -1 < x < \frac{1}{5} \] ### Step 4: Determine possible values for \( x \) The values that \( x \) can take are any real numbers that lie between -1 and \( \frac{1}{5} \). ### Conclusion Since the question asks which of the following values \( x \) can take, we need to check the provided options. If one of the options is 0, then \( x \) can take that value because: \[ -1 < 0 < \frac{1}{5} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos
MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If 2x -1 lt 5x + 2 and 2x + 5 lt 6 - 3x, then x can take which of the ...

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |