Home
Class 14
MATHS
On dividing 24 a ^(2) b ^(2) by 6 b ^(2)...

On dividing `24 a ^(2) b ^(2) by 6 b ^(2),` we will get

A

`4b ^(2)`

B

`4a ^(2)`

C

`4 a ^(2) b ^(2)`

D

`4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of dividing \( 24a^2b^2 \) by \( 6b^2 \), we can follow these steps: ### Step 1: Write the division as a fraction We start by expressing the division as a fraction: \[ \frac{24a^2b^2}{6b^2} \] ### Step 2: Simplify the coefficients Next, we simplify the numerical coefficients. We divide \( 24 \) by \( 6 \): \[ \frac{24}{6} = 4 \] ### Step 3: Simplify the variable \( b \) Now, we simplify the \( b^2 \) terms. Since both the numerator and the denominator have \( b^2 \), they cancel each other out: \[ b^2 \div b^2 = 1 \] ### Step 4: Combine the results After simplifying the coefficients and the \( b \) terms, we are left with: \[ 4a^2 \cdot 1 = 4a^2 \] ### Final Answer Thus, the result of dividing \( 24a^2b^2 \) by \( 6b^2 \) is: \[ 4a^2 \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

On dividing p ( 4p ^(2) - 16) by 4p (p-2), we get

On dividing 57 p ^(2) qr by 114 pq. We get

On dividing 8^(5) by __________we get 8.

Factorise the using the identity a ^(2) + 2 ab + b ^(2) = (a + b) ^(2) 9x ^(2) + 24 x + 16

If we toss two unbiased coins simultaneously then the probability of getting no head is (A)/(B) . Then (A + B)^(2) will be equal to:

If we toss two unbiased coins simultaneously, then the probability of getting no head is (A)/(B) . Then (A + B)^(2) will be equal to:

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. On dividing 24 a ^(2) b ^(2) by 6 b ^(2), we will get

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |