Home
Class 14
MATHS
Ths Simplified from of (b ^(3)x ^(2) a ^...

Ths Simplified from of `(b ^(3)x ^(2) a ^(4) z^(2)) ^(**)(b^ (4) x ^(3) a ^(3) z ^(3))//(a ^(2) b ^(4) z ^(3))` is

A

`b ^(2) x ^(4) a ^(6)z`

B

`b ^(3) x ^(2) a ^(4) z ^(3)`

C

`b ^(x) x ^(5) a ^(5) z ^(2)`

D

`b ^(3) a ^(5) z ^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((b^{3}x^{2}a^{4}z^{2})^{(b^{4}x^{3}a^{3}z^{3})} \div (a^{2}b^{4}z^{3})\), we can follow these steps: ### Step 1: Write the expression clearly The expression we need to simplify is: \[ \frac{(b^{3}x^{2}a^{4}z^{2})^{(b^{4}x^{3}a^{3}z^{3})}}{(a^{2}b^{4}z^{3})} \] ### Step 2: Simplify the numerator In the numerator, we have \((b^{3}x^{2}a^{4}z^{2})^{(b^{4}x^{3}a^{3}z^{3})}\). This means we need to multiply the exponents of each variable by the exponent in the parentheses. - For \(b\): \(3 \cdot 4 = 12\) - For \(x\): \(2 \cdot 3 = 6\) - For \(a\): \(4 \cdot 3 = 12\) - For \(z\): \(2 \cdot 3 = 6\) So, the numerator simplifies to: \[ b^{12}x^{6}a^{12}z^{6} \] ### Step 3: Write the complete expression Now, we can rewrite the complete expression as: \[ \frac{b^{12}x^{6}a^{12}z^{6}}{a^{2}b^{4}z^{3}} \] ### Step 4: Simplify the fraction Now we will simplify the fraction by subtracting the exponents of like bases in the numerator and denominator. - For \(b\): \(12 - 4 = 8\) - For \(x\): \(6 - 0 = 6\) (there's no \(x\) in the denominator) - For \(a\): \(12 - 2 = 10\) - For \(z\): \(6 - 3 = 3\) So, the simplified form of the expression is: \[ b^{8}x^{6}a^{10}z^{3} \] ### Final Answer Thus, the simplified form of the given expression is: \[ b^{8}x^{6}a^{10}z^{3} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

Simplify: x^7 y^3 z^(-4) xx x^(-4) y^6 z^(-2) xx x^2 z^3

Simplify: (x+y-2z)^(2)-x^(2)-y^(2)-3z^(2)+4xy

Knowledge Check

  • Simplify (b ^(5) x ^(2) a ^(3) z ^(4)) ^(**) (b ^(3) x ^(2) a ^(4) z ^(5))//(a ^(2) b ^(3) z ^(2))

    A
    `b ^(5) x ^(4) a ^(5) z^(5)`
    B
    `b ^(5) x ^(4) a ^(5) z^(7)`
    C
    `b ^(5) x ^(4) a ^(4) z^(7)`
    D
    `b ^(4) x^(4) a ^(5) z^(7)`
  • Simplifiy (b ^(2) x ^(3) a ^(2) a^(4))^(**)(b ^(2)x ^(4) a ^(4) z ^(3)) //(a ^(3) b ^(2) z ^(4))

    A
    `b ^(3) x ^(7)a ^(3) z ^(3)`
    B
    `b ^(2) x ^(7) a ^(3) z ^(3)`
    C
    `b ^(2) x^(5) a ^(3) z ^(3)`
    D
    `b ^(2) x ^(7)a ^(3) z ^(2)`
  • Simplify 486 b ^(3) x ^(2) a ^(4) z ^(3)//27 a ^(3) b ^(2)z

    A
    `18 bx ^(2) az ^(2)`
    B
    `18 bx ^(2) a ^(2)z`
    C
    `36 ba ^(2) z`
    D
    `36 bxa ^(2) z`
  • Similar Questions

    Explore conceptually related problems

    Simplify: (15x^(5)y^(-2)z^(4))/(5x^(3)y^(-3)z^(2))

    Simplify 576b ^(3) x ^(2) a ^(4) z ^(3)//36a ^(3) b ^()z

    lim_(xto0)(x(z^(2)-(z-x)^(2))^(1//3))/([(8 x z -4x^(2))^(1//3)+(8x z)^(1//3)]^(4)) is

    (x^(4))/(4) + (y^(3))/(3) - (3z^(2))/(5) + (x^(4))/(3) - (3y^(3))/(5) + (z^(2))/(4) - (3x^(4))/(5) + (y^(3))/(4) + (z^(2))/(3) = "________" .

    3^(4)+x^(3)y^(6)z^(4)xx 27x^(-2)z^(-6)+81x y^(2)z^(-3)= ______