Home
Class 14
MATHS
If 5 - x lt 1 + 5x and 2x + 3 (5 - 2x) l...

If `5 - x lt 1 + 5x and 2x + 3 (5 - 2x) lt 2 - 3x,` then x can ake which of the following values ?

A

0

B

`-1`

C

14

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequalities given in the question, we will break it down into two parts. ### Step 1: Solve the first inequality The first inequality is: \[ 5 - x < 1 + 5x \] 1. Start by isolating \( x \). First, subtract \( 1 \) from both sides: \[ 5 - x - 1 < 5x \] \[ 4 - x < 5x \] 2. Next, add \( x \) to both sides: \[ 4 < 5x + x \] \[ 4 < 6x \] 3. Now, divide both sides by \( 6 \): \[ \frac{4}{6} < x \] \[ \frac{2}{3} < x \] This means: \[ x > \frac{2}{3} \] ### Step 2: Solve the second inequality The second inequality is: \[ 2x + 3(5 - 2x) < 2 - 3x \] 1. Start by distributing \( 3 \) in the left side: \[ 2x + 15 - 6x < 2 - 3x \] 2. Combine like terms on the left side: \[ 15 - 4x < 2 - 3x \] 3. Now, add \( 4x \) to both sides: \[ 15 < 2 + x \] 4. Subtract \( 2 \) from both sides: \[ 15 - 2 < x \] \[ 13 < x \] This means: \[ x > 13 \] ### Step 3: Combine the results From the two inequalities we have: 1. \( x > \frac{2}{3} \) 2. \( x > 13 \) Since \( 13 \) is greater than \( \frac{2}{3} \), the more restrictive condition is \( x > 13 \). ### Conclusion Thus, the values that \( x \) can take must be greater than \( 13 \). The only integer value that satisfies this condition from the options provided is \( 14 \). ### Final Answer The value of \( x \) that satisfies both inequalities is \( 14 \). ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos
MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If 5 - x lt 1 + 5x and 2x + 3 (5 - 2x) lt 2 - 3x, then x can ake which...

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |