Home
Class 14
MATHS
If 3 (2-3x) lt 2 - 3 x lt 4 x -6, then x...

If `3 (2-3x) lt 2 - 3 x lt 4 x -6,` then x can take which of the following values ?

A

2

B

`-1`

C

`-2`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \(3(2 - 3x) < 2 - 3x < 4x - 6\), we will break it down into two separate inequalities and solve each one step by step. ### Step 1: Break down the compound inequality We can separate the compound inequality into two parts: 1. \(3(2 - 3x) < 2 - 3x\) 2. \(2 - 3x < 4x - 6\) ### Step 2: Solve the first inequality Let's solve the first inequality: \[ 3(2 - 3x) < 2 - 3x \] Distributing the 3 on the left side: \[ 6 - 9x < 2 - 3x \] Now, we will move all terms involving \(x\) to one side and constant terms to the other side: \[ 6 - 2 < 9x - 3x \] This simplifies to: \[ 4 < 6x \] Dividing both sides by 6 gives: \[ \frac{4}{6} < x \quad \Rightarrow \quad \frac{2}{3} < x \] ### Step 3: Solve the second inequality Now, let's solve the second inequality: \[ 2 - 3x < 4x - 6 \] Again, move all terms involving \(x\) to one side and constant terms to the other: \[ 2 + 6 < 4x + 3x \] This simplifies to: \[ 8 < 7x \] Dividing both sides by 7 gives: \[ \frac{8}{7} < x \] ### Step 4: Combine the results From the two inequalities, we have: 1. \(x > \frac{2}{3}\) 2. \(x > \frac{8}{7}\) Since \(\frac{8}{7} \approx 1.14\) is greater than \(\frac{2}{3} \approx 0.67\), the more restrictive condition is \(x > \frac{8}{7}\). ### Conclusion Thus, the values of \(x\) that satisfy the original inequality are: \[ x > \frac{8}{7} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos
MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If 3 (2-3x) lt 2 - 3 x lt 4 x -6, then x can take which of the followi...

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |