Home
Class 14
MATHS
If x +5 (x -2) lt 4 - x lt 4x - 1, then ...

If `x +5 (x -2) lt 4 - x lt 4x - 1,` then the value of x is

A

`(-3)/(2)`

B

`(3)/(2)`

C

0

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( x + 5(x - 2) < 4 - x < 4x - 1 \), we will break it down into two parts and solve each part step by step. ### Step 1: Solve the first inequality \( x + 5(x - 2) < 4 - x \) 1. Expand the left side: \[ x + 5(x - 2) = x + 5x - 10 = 6x - 10 \] So the inequality becomes: \[ 6x - 10 < 4 - x \] 2. Add \( x \) to both sides: \[ 6x + x - 10 < 4 \] This simplifies to: \[ 7x - 10 < 4 \] 3. Add \( 10 \) to both sides: \[ 7x < 14 \] 4. Divide by \( 7 \): \[ x < 2 \] ### Step 2: Solve the second inequality \( 4 - x < 4x - 1 \) 1. Add \( x \) to both sides: \[ 4 < 4x + x - 1 \] This simplifies to: \[ 4 < 5x - 1 \] 2. Add \( 1 \) to both sides: \[ 5 < 5x \] 3. Divide by \( 5 \): \[ 1 < x \quad \text{or} \quad x > 1 \] ### Step 3: Combine the results from both inequalities From the first inequality, we found: \[ x < 2 \] From the second inequality, we found: \[ x > 1 \] ### Final Result Combining these results, we have: \[ 1 < x < 2 \] Thus, the value of \( x \) lies between \( 1 \) and \( 2 \). A specific value that satisfies this condition is \( x = \frac{3}{2} \) or \( 1.5 \). ### Summary The value of \( x \) that satisfies the inequality \( x + 5(x - 2) < 4 - x < 4x - 1 \) is: \[ x = \frac{3}{2} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sqrt(x-4sqrt(x-4))+tan^(-1)((1-2x)/(2+x)), AA 4 lt x lt 8 , then the value of f'(5) is equal to

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If x +5 (x -2) lt 4 - x lt 4x - 1, then the value of x is

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |