Home
Class 14
MATHS
If xy = 48 and x ^(2) + y ^(2) =100, the...

If `xy = 48 and x ^(2) + y ^(2) =100,` then (x +y) is

A

12

B

16

C

178

D

14

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x + y \) given that \( xy = 48 \) and \( x^2 + y^2 = 100 \). ### Step-by-Step Solution: 1. **Use the identity for \( (x + y)^2 \)**: We know that: \[ (x + y)^2 = x^2 + y^2 + 2xy \] 2. **Substitute the known values**: We have \( x^2 + y^2 = 100 \) and \( xy = 48 \). Substitute these values into the identity: \[ (x + y)^2 = 100 + 2(48) \] 3. **Calculate \( 2xy \)**: Calculate \( 2xy \): \[ 2xy = 2 \times 48 = 96 \] 4. **Combine the values**: Now substitute back into the equation: \[ (x + y)^2 = 100 + 96 = 196 \] 5. **Take the square root**: To find \( x + y \), take the square root of both sides: \[ x + y = \sqrt{196} \] 6. **Calculate the square root**: The square root of 196 is: \[ x + y = 14 \] ### Final Answer: Thus, the value of \( x + y \) is \( 14 \).
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

x^(2) + xy + y^(2) =100

If xy = 6 and x ^(2) y + xy ^(2) + x + y = 63, then the value of x ^(2) + y ^(2) is

If xy = 6 and x^(2) y + xy^(2) + x+y =63 , then the value of x^(2) +y^(2) is

If 4x - 3y = 7xy and 3x + 2y = 18xy , then (x,y) =

x-x^(2)y+xy^(2)-y

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If xy = 48 and x ^(2) + y ^(2) =100, then (x +y) is

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |