Home
Class 14
MATHS
If 2 + 2x lt 3 + 5x and 3 (x-2) lt 5 -x,...

If `2 + 2x lt 3 + 5x and 3 (x-2) lt 5 -x,` then x can take which of the following values ?

A

1

B

3

C

`-1`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequalities given in the question, we will break it down into two parts and solve each inequality step by step. ### Step 1: Solve the first inequality The first inequality is: \[ 2 + 2x < 3 + 5x \] **Subtract \(2x\) from both sides:** \[ 2 < 3 + 5x - 2x \] \[ 2 < 3 + 3x \] **Subtract 3 from both sides:** \[ 2 - 3 < 3x \] \[ -1 < 3x \] **Divide both sides by 3:** \[ -\frac{1}{3} < x \] or \[ x > -\frac{1}{3} \] ### Step 2: Solve the second inequality The second inequality is: \[ 3(x - 2) < 5 - x \] **Distribute 3 on the left side:** \[ 3x - 6 < 5 - x \] **Add \(x\) to both sides:** \[ 3x + x - 6 < 5 \] \[ 4x - 6 < 5 \] **Add 6 to both sides:** \[ 4x < 5 + 6 \] \[ 4x < 11 \] **Divide both sides by 4:** \[ x < \frac{11}{4} \] or \[ x < 2.75 \] ### Step 3: Combine the results From the two inequalities, we have: 1. \( x > -\frac{1}{3} \) 2. \( x < 2.75 \) ### Conclusion Combining these results, we find: \[ -\frac{1}{3} < x < 2.75 \] Thus, the values that \(x\) can take are any values greater than \(-\frac{1}{3}\) and less than \(2.75\).
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos
MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If 2 + 2x lt 3 + 5x and 3 (x-2) lt 5 -x, then x can take which of the ...

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |