Home
Class 14
MATHS
If 2x - 2 (4-x) lt 2x -3 lt 3x + 3, then...

If `2x - 2 (4-x) lt 2x -3 lt 3x + 3,` then x can take which of the following values ? (a) 2 (b) 3 (c) 4 (d) 5

A

2

B

3

C

4

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( 2x - 2(4 - x) < 2x - 3 < 3x + 3 \), we will break it down into two separate inequalities and solve each one step by step. ### Step 1: Solve the first part of the inequality We start with the first part: \[ 2x - 2(4 - x) < 2x - 3 \] Distributing the \(-2\): \[ 2x - 8 + 2x < 2x - 3 \] Combine like terms: \[ 4x - 8 < 2x - 3 \] Now, subtract \(2x\) from both sides: \[ 4x - 2x - 8 < -3 \] \[ 2x - 8 < -3 \] Next, add \(8\) to both sides: \[ 2x < 5 \] Finally, divide by \(2\): \[ x < \frac{5}{2} \] \[ x < 2.5 \] ### Step 2: Solve the second part of the inequality Now we solve the second part: \[ 2x - 3 < 3x + 3 \] Subtract \(2x\) from both sides: \[ -3 < x + 3 \] Next, subtract \(3\) from both sides: \[ -6 < x \] or \[ x > -6 \] ### Step 3: Combine the results Now we have two inequalities: 1. \( x < \frac{5}{2} \) (or \( x < 2.5 \)) 2. \( x > -6 \) This means: \[ -6 < x < \frac{5}{2} \] ### Step 4: Determine valid integer values The integer values that satisfy this inequality are \( -5, -4, -3, -2, -1, 0, 1, 2 \). ### Step 5: Check the options provided The options given are: (a) 2 (b) 3 (c) 4 (d) 5 Among these options, the only value that satisfies \( -6 < x < 2.5 \) is \( 2 \). ### Final Answer Thus, the value of \( x \) can take is: **(a) 2** ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos
MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If 2x - 2 (4-x) lt 2x -3 lt 3x + 3, then x can take which of the follo...

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |