Home
Class 14
MATHS
If 2x + 2 ( 4 + 3x) lt 2 + 3x < 2x + x//...

If `2x + 2 ( 4 + 3x) lt 2 + 3x < 2x + x//2,` then x can take which of the following values ?

A

`-3`

B

1

C

0

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( 2x + 2(4 + 3x) < 2 + 3x < 2x + \frac{x}{2} \), we will break it down into two parts and solve each inequality separately. ### Step 1: Solve the first inequality \( 2x + 2(4 + 3x) < 2 + 3x \) 1. Expand the left side: \[ 2x + 2 \times 4 + 2 \times 3x < 2 + 3x \] This simplifies to: \[ 2x + 8 + 6x < 2 + 3x \] Combine like terms: \[ 8x + 8 < 2 + 3x \] 2. Rearrange the inequality: \[ 8x - 3x < 2 - 8 \] This simplifies to: \[ 5x < -6 \] 3. Divide by 5: \[ x < -\frac{6}{5} \] ### Step 2: Solve the second inequality \( 2 + 3x < 2x + \frac{x}{2} \) 1. Rearrange the inequality: \[ 3x - 2x < \frac{x}{2} - 2 \] This simplifies to: \[ x < \frac{x}{2} - 2 \] 2. Multiply everything by 2 to eliminate the fraction: \[ 2x < x - 4 \] 3. Rearrange the inequality: \[ 2x - x < -4 \] This simplifies to: \[ x < -4 \] ### Step 3: Combine the results From the first inequality, we found that \( x < -\frac{6}{5} \) and from the second inequality, we found that \( x < -4 \). The more restrictive condition is \( x < -4 \). ### Conclusion Thus, the solution to the original compound inequality is: \[ x < -4 \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

3(1 - x ) lt 2 (x + 4)

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If 2x + 2 ( 4 + 3x) lt 2 + 3x < 2x + x//2, then x can take which of th...

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |