Home
Class 14
MATHS
(a + b - 2c) ^(3) + (b + c - 2a) ^(3) + ...

`(a + b - 2c) ^(3) + (b + c - 2a) ^(3) + (c + a - 2b) ^(3)` is equal to :

A

`(a + b - 2c) (b + c - 2a) (c = a - 2b)`

B

`2 (a + b - 2c) (b + c - 2a) (c + a - 2b)`

C

`3(a + b - 2c) (b + c - 2a) (c + a - 2b)`

D

`-3a (a + b - 2c) (b + c - 2a) (c + a - 2b)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((a + b - 2c)^3 + (b + c - 2a)^3 + (c + a - 2b)^3\), we can use a well-known algebraic identity. ### Step-by-Step Solution: 1. **Identify the terms**: Let: - \(x = a + b - 2c\) - \(y = b + c - 2a\) - \(z = c + a - 2b\) We need to evaluate \(x^3 + y^3 + z^3\). 2. **Check if \(x + y + z = 0\)**: Calculate \(x + y + z\): \[ x + y + z = (a + b - 2c) + (b + c - 2a) + (c + a - 2b) \] Simplifying this: \[ = a + b - 2c + b + c - 2a + c + a - 2b \] Combine like terms: \[ = (a - 2a + a) + (b - 2b + b) + (-2c + c + c) = 0 \] Since \(x + y + z = 0\), we can use the identity for cubes. 3. **Apply the identity**: The identity states that if \(x + y + z = 0\), then: \[ x^3 + y^3 + z^3 = 3xyz \] 4. **Calculate \(xyz\)**: Now we need to find \(xyz\): \[ xyz = (a + b - 2c)(b + c - 2a)(c + a - 2b) \] 5. **Substituting back**: Therefore, we have: \[ (a + b - 2c)^3 + (b + c - 2a)^3 + (c + a - 2b)^3 = 3xyz \] 6. **Final Expression**: The final expression is: \[ 3(a + b - 2c)(b + c - 2a)(c + a - 2b) \] ### Conclusion: Thus, the expression \((a + b - 2c)^3 + (b + c - 2a)^3 + (c + a - 2b)^3\) simplifies to \(3(a + b - 2c)(b + c - 2a)(c + a - 2b)\).
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

The value of [(a^2-b^2)^3+(b^2-c^2)^3 + (c^2-a^2)^3] div [(a-b)^3+(b-c)^3+(c-a)^3 ] is equal to: (Given a ne b ne c ) [(a^2-b^2)^3+(b^2-c^2)^3 + (c^2-a^2)^3] div [(a-b)^3+(b-c)^3+(c-a)^3 ] का मान बराबर है: ( a ne b ne c दिया)

.Factorise: (2a-b-c)^(3)+(2b-c-a)^(3)+(2c-a-b)^(3)

If a+b+ 2c=0 , then the value of a^(3) + b^(3) + 8c^(3) is equal to

if a+b+c = 0, then ((2a^2)/(3bc)+ (2b^2)/(3ca)+(2c^2)/(3ab)) is equal to: यदि a+b+c = 0 है, तो ((2a^2)/(3bc)+ (2b^2)/(3ca)+(2c^2)/(3ab)) बराबर है :

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. (a + b - 2c) ^(3) + (b + c - 2a) ^(3) + (c + a - 2b) ^(3) is equal to...

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |