Home
Class 14
MATHS
If a = 34, b =c = 33, then the value of ...

If `a = 34, b =c = 33,` then the value of `a ^(3) + b ^(3) + c ^(3)- 3 abc` is :

A

A)0

B

B)111

C

C)50

D

D)100

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the expression \( a^3 + b^3 + c^3 - 3abc \) given that \( a = 34 \), \( b = 33 \), and \( c = 33 \). ### Step-by-step Solution: 1. **Identify the Values**: - Given: \( a = 34 \), \( b = 33 \), \( c = 33 \) 2. **Calculate \( a + b + c \)**: \[ a + b + c = 34 + 33 + 33 = 100 \] 3. **Calculate \( a - b \)**: \[ a - b = 34 - 33 = 1 \] 4. **Calculate \( b - c \)**: \[ b - c = 33 - 33 = 0 \] 5. **Calculate \( c - a \)**: \[ c - a = 33 - 34 = -1 \] 6. **Square the Differences**: - \( (a - b)^2 = 1^2 = 1 \) - \( (b - c)^2 = 0^2 = 0 \) - \( (c - a)^2 = (-1)^2 = 1 \) 7. **Sum of the Squares**: \[ (a - b)^2 + (b - c)^2 + (c - a)^2 = 1 + 0 + 1 = 2 \] 8. **Use the Formula**: The formula for \( a^3 + b^3 + c^3 - 3abc \) is: \[ a^3 + b^3 + c^3 - 3abc = \frac{1}{2} (a + b + c) \left( (a - b)^2 + (b - c)^2 + (c - a)^2 \right) \] Substituting the values we calculated: \[ a^3 + b^3 + c^3 - 3abc = \frac{1}{2} \times 100 \times 2 \] 9. **Calculate the Final Value**: \[ = \frac{1}{2} \times 100 \times 2 = 100 \] ### Final Answer: The value of \( a^3 + b^3 + c^3 - 3abc \) is \( 100 \). ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If a = 500 , b = 502 and c = 504 , then the value of a^(3) + b^(3) + c^(3) - 3abc

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If a = 34, b =c = 33, then the value of a ^(3) + b ^(3) + c ^(3)- 3 ab...

    Text Solution

    |

  2. If (5 sqrt5 x^3-3 sqrt3 y^3) div (sqrt5x- sqrt3y)=(Ax^2+By^2+Cxy), the...

    Text Solution

    |

  3. If x+y+z=19, x^2+y^2+z^2=133 and xz=y^2, then the difference between z...

    Text Solution

    |

  4. If x^(4) + x^(-4) = 194 , x gt 0 then the value of ( x - 2) ^(2) i...

    Text Solution

    |

  5. If 16x^2+9y^2 +4z^2= 24(x-y+z)-61, then the value of (xy + 2z) is : ...

    Text Solution

    |

  6. If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+...

    Text Solution

    |

  7. If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy, then the value of...

    Text Solution

    |

  8. If a^(2) + b^(2) + 64c^(2) + 16c + 3 = 2(a+b), then the value of 4a^(7...

    Text Solution

    |

  9. If x + y = 1 and xy(xy - 2) = 12, then the value of x^4+y^4 is: यदि ...

    Text Solution

    |

  10. If (27x^3-343y^3) div (3x-7y)=Ax^2+By^2 +7Cyx, then the value of (4A -...

    Text Solution

    |

  11. If a^2+b^2+c^2=21, and a + b + c = 7, then (ab + bc + ca) is equal to ...

    Text Solution

    |

  12. If ab + bc + ca = 8 and a^2+b^2+c^2=20, then a possible value of 1/2 (...

    Text Solution

    |

  13. If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2), then the valueof (2A + B ...

    Text Solution

    |

  14. If x = a + (1)/(a) and y = a - (1)/(a) then sqrt(x^(4) + y^(4) - 2x^(2...

    Text Solution

    |

  15. If 2x^(2) + y^(2) + 6x - 2xy + 9 = 0, then the value of (4x^(3) - y^(3...

    Text Solution

    |

  16. If x + y = 12 and xy = 27, x > y, then the value of (x^3-y^3) is: यद...

    Text Solution

    |

  17. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  19. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  20. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  21. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |