Home
Class 14
MATHS
If x = (sqrt3 + sqrt2)/(sqrt3 - sqrt2) ,...

If `x = (sqrt3 + sqrt2)/(sqrt3 - sqrt2) ,` then the value of `(x + (1)/(x))` is :

A

A)8

B

B)10

C

C)12

D

D)16

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x + \frac{1}{x} \) given that \( x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \). ### Step 1: Simplify \( x \) We start with the expression for \( x \): \[ x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \] To simplify this, we multiply the numerator and the denominator by the conjugate of the denominator, which is \( \sqrt{3} + \sqrt{2} \): \[ x = \frac{(\sqrt{3} + \sqrt{2})(\sqrt{3} + \sqrt{2})}{(\sqrt{3} - \sqrt{2})(\sqrt{3} + \sqrt{2})} \] ### Step 2: Calculate the numerator and denominator Calculating the numerator: \[ (\sqrt{3} + \sqrt{2})^2 = 3 + 2 + 2\sqrt{3}\sqrt{2} = 5 + 2\sqrt{6} \] Calculating the denominator: \[ (\sqrt{3})^2 - (\sqrt{2})^2 = 3 - 2 = 1 \] So, we have: \[ x = \frac{5 + 2\sqrt{6}}{1} = 5 + 2\sqrt{6} \] ### Step 3: Find \( \frac{1}{x} \) Now, we need to find \( \frac{1}{x} \): \[ \frac{1}{x} = \frac{1}{5 + 2\sqrt{6}} \] To rationalize the denominator, we multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{1}{x} = \frac{1 \cdot (5 - 2\sqrt{6})}{(5 + 2\sqrt{6})(5 - 2\sqrt{6})} \] Calculating the denominator: \[ (5)^2 - (2\sqrt{6})^2 = 25 - 24 = 1 \] Thus, we have: \[ \frac{1}{x} = 5 - 2\sqrt{6} \] ### Step 4: Calculate \( x + \frac{1}{x} \) Now we can find \( x + \frac{1}{x} \): \[ x + \frac{1}{x} = (5 + 2\sqrt{6}) + (5 - 2\sqrt{6}) \] The \( 2\sqrt{6} \) terms cancel out: \[ x + \frac{1}{x} = 5 + 5 = 10 \] ### Final Answer Thus, the value of \( x + \frac{1}{x} \) is: \[ \boxed{10} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If x = sqrt3+ sqrt2, then the value of (x +frac(1)(x)) is

IF x=sqrt(3)+sqrt(2) then the value of x+(1)/(x) is

Knowledge Check

  • If x = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)) and y = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) , then the value of x^(3) + y^(3) is :

    A
    1030
    B
    970
    C
    990
    D
    99
  • If x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) , find the value of x^(2) + (1)/(x^(2)) .

    A
    38
    B
    98
    C
    62
    D
    47
  • If x = (sqrt3 - sqrt2)/( sqrt3 + sqrt2) and y = ( sqrt3 + sqrt2)/( sqrt3 - sqrt2), then the value x ^(3) + y^(2) is :

    A
    950
    B
    730
    C
    650
    D
    970
  • Similar Questions

    Explore conceptually related problems

    If x=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)), then the value of x^(2)+(1)/(x^(2))

    If x = sqrt3 + sqrt2, then the value of x ^(3) - (1)/(x ^(3)) is :

    If x = (2 sqrt6)/(sqrt3 + sqrt2) , then the value of (x + sqrt2)/(x - sqrt2) + (x + sqrt3)/(x - sqrt3) is :

    If x= sqrt3 + sqrt2 , then value of (x^(2) + (1)/(x^(2))) is

    If x = sqrt3 + sqrt2 and y = sqrt3 - sqrt2 , then the value of 8 xy (x ^(2) + y ^(2)) is :