Home
Class 14
MATHS
If a + (1)/(a) = 3, then (a^(4) + (1)/(a...

If `a + (1)/(a) = 3`, then `(a^(4) + (1)/(a^(4)))` is equal to :

A

A)77

B

B)47

C

C)81

D

D)27

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a + \frac{1}{a} = 3 \) and find \( a^4 + \frac{1}{a^4} \), we can follow these steps: ### Step 1: Square both sides of the equation Starting with the given equation: \[ a + \frac{1}{a} = 3 \] We square both sides: \[ \left( a + \frac{1}{a} \right)^2 = 3^2 \] This simplifies to: \[ a^2 + 2 + \frac{1}{a^2} = 9 \] ### Step 2: Rearrange to find \( a^2 + \frac{1}{a^2} \) Now, we can rearrange the equation to isolate \( a^2 + \frac{1}{a^2} \): \[ a^2 + \frac{1}{a^2} = 9 - 2 \] Thus, we have: \[ a^2 + \frac{1}{a^2} = 7 \] ### Step 3: Square again to find \( a^4 + \frac{1}{a^4} \) Next, we square \( a^2 + \frac{1}{a^2} \): \[ \left( a^2 + \frac{1}{a^2} \right)^2 = 7^2 \] This expands to: \[ a^4 + 2 + \frac{1}{a^4} = 49 \] ### Step 4: Rearrange to find \( a^4 + \frac{1}{a^4} \) Now, we rearrange to isolate \( a^4 + \frac{1}{a^4} \): \[ a^4 + \frac{1}{a^4} = 49 - 2 \] Thus, we find: \[ a^4 + \frac{1}{a^4} = 47 \] ### Final Answer Therefore, the value of \( a^4 + \frac{1}{a^4} \) is: \[ \boxed{47} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If 2a - (1)/(2a) = 3, then 16 a ^(4) + (1)/(16 a ^(4)) is equal to

If x+(1)/(x) =4 , " then " x^(3) + (1)/(x^(3)) is equal to :

If x + ( 1)/( x) = 4 , then x^(3) + ( 1)/( x^(3) is equal to :

(1+i)^(4)+(1-i)^( 4) is equal to

2^(1/2)*4^(3/4) is equal to

2/3-1/4 is equal to

[(3-4(3-4)^(-1)]^(-1) is equal to :

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If x^2+y^2+z^2=133,xy +yz + zx = 114 and xyz = 216, then the value of ...

    Text Solution

    |

  2. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2+Cxy+By^2), then the v...

    Text Solution

    |

  3. If a + (1)/(a) = 3, then (a^(4) + (1)/(a^(4))) is equal to :

    Text Solution

    |

  4. If a + b + c = 2, a^(2) + b^(2) + c^(2) = 26, then the value of a^(3) ...

    Text Solution

    |

  5. If (x^3-2 sqrt2 y^3) div (x-sqrt2 y)= (Ax^2+Bxy+Cy^2), then, (2A+4 sqr...

    Text Solution

    |

  6. If x^(4) - 6x^(2) - 1 = 0, then the value of x^(6) - 5x^(2) + (5)/(x^(...

    Text Solution

    |

  7. If x = 2 - p , then x^3+6xp+p^3, is equal to: यदि x = 2 - p है, तो x...

    Text Solution

    |

  8. If 9a^2+4b^2+c^2+21= 4(3a + b - 2c), then the value of (9a + 4b - c) i...

    Text Solution

    |

  9. If 135 sqrt5 x^3-2 sqrt2 y^3 div 3 sqrt5 x- sqrt2 y= Ax^2+By^2+sqrt10 ...

    Text Solution

    |

  10. If x^(2) - 3x - 1 = 0, then the value of (x^(2) + 8x - 1)(x^(3) + x^(-...

    Text Solution

    |

  11. If (8x^3+27y^3)div (2x+3y)= (Ax^2+Bxy+Cy^2), then the valueof (5A + 4B...

    Text Solution

    |

  12. If (6x)/((2x^(2) + 5x - 2)) = 1, x gt 0, then the value of x^(3) + (1)...

    Text Solution

    |

  13. If 4x^(2) - 6x + 1 = 0, then the value of 8x^(3) + (8x^(3))^(-1) is :

    Text Solution

    |

  14. If x + y + z = 0 ,then the value of ( x^(2) + y^(2) + z^(2))/( x...

    Text Solution

    |

  15. If a^2+b^2+c^2+27= 6(a+b+c), then what is the value of root (3)(a^3+b^...

    Text Solution

    |

  16. If x + (1)/(x) = 3, then x^(3) + (1)/(x^(3)) is equal to :

    Text Solution

    |

  17. If sqrt(x) - (1)/(sqrt(x)) = 4, then x^(2) + (1)/(x^(2)) is equal to :

    Text Solution

    |

  18. If a + b + c = 13 and ab + bc + ca = 54, then a^(3) + b^(3) + c^(3) - ...

    Text Solution

    |

  19. If x + (1)/(x) = sqrt(5), then x^(3) + (1)/(x^(3)) is equal to :

    Text Solution

    |

  20. If (3x-1)^3+(4x-3)^3+ (2x+1)^3= 3(3x - 1)(4x - 3)(2x +1) and x ne 1/3 ...

    Text Solution

    |