Home
Class 14
MATHS
If x^(2) - 3x - 1 = 0, then the value of...

If `x^(2) - 3x - 1 = 0`, then the value of `(x^(2) + 8x - 1)(x^(3) + x^(-1))^(-1)` is

A

`(3)/(8)`

B

8

C

1

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 - 3x - 1 = 0 \) and find the value of \( (x^2 + 8x - 1)(x^3 + x^{-1})^{-1} \), we can follow these steps: ### Step 1: Solve the quadratic equation We start with the equation: \[ x^2 - 3x - 1 = 0 \] We can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1, b = -3, c = -1 \). Plugging in these values: \[ x = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] \[ x = \frac{3 \pm \sqrt{9 + 4}}{2} \] \[ x = \frac{3 \pm \sqrt{13}}{2} \] ### Step 2: Substitute \( x \) into the expression We need to evaluate: \[ (x^2 + 8x - 1)(x^3 + x^{-1})^{-1} \] First, calculate \( x^2 + 8x - 1 \): Using \( x^2 = 3x + 1 \) (from the original equation): \[ x^2 + 8x - 1 = (3x + 1) + 8x - 1 = 11x \] ### Step 3: Calculate \( x^3 + x^{-1} \) To find \( x^3 \), we can use \( x^3 = x \cdot x^2 \): \[ x^3 = x(3x + 1) = 3x^2 + x \] Substituting \( x^2 = 3x + 1 \): \[ x^3 = 3(3x + 1) + x = 9x + 3 + x = 10x + 3 \] Now, we need \( x^{-1} \): From the original equation \( x^2 - 3x - 1 = 0 \), we can express \( x^{-1} \) as: \[ x^{-1} = \frac{1}{x} = \frac{3 - x}{1} \text{ (from rearranging the equation)} \] Thus, \( x^3 + x^{-1} \) becomes: \[ x^3 + x^{-1} = (10x + 3) + \frac{3 - x}{1} = 10x + 3 + 3 - x = 9x + 6 \] ### Step 4: Evaluate the entire expression Now we substitute back into the expression: \[ (11x)(9x + 6)^{-1} \] This simplifies to: \[ \frac{11x}{9x + 6} \] ### Step 5: Simplify further Factoring out \( 3 \) from the denominator: \[ \frac{11x}{3(3x + 2)} = \frac{11}{3} \cdot \frac{x}{3x + 2} \] ### Final Step: Substitute \( x \) Now we can substitute \( x = \frac{3 + \sqrt{13}}{2} \) or \( x = \frac{3 - \sqrt{13}}{2} \) into the expression, but we can also evaluate the expression directly since it is independent of the specific value of \( x \). ### Conclusion Thus, the final value of \( (x^2 + 8x - 1)(x^3 + x^{-1})^{-1} \) is: \[ \frac{11}{3} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If x^2 - 3x +1=0, then the value of x +1/x is

If x^2 - 3x + 1 = 0 , then the value of (x^6 + x^4 + x^2 + 1)/(x^3) will be

If x ^(2) - 3 sqrt2 x +1 = 0, then the value of x ^(3) + (1)/(x ^(3)) is :

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If 9a^2+4b^2+c^2+21= 4(3a + b - 2c), then the value of (9a + 4b - c) i...

    Text Solution

    |

  2. If 135 sqrt5 x^3-2 sqrt2 y^3 div 3 sqrt5 x- sqrt2 y= Ax^2+By^2+sqrt10 ...

    Text Solution

    |

  3. If x^(2) - 3x - 1 = 0, then the value of (x^(2) + 8x - 1)(x^(3) + x^(-...

    Text Solution

    |

  4. If (8x^3+27y^3)div (2x+3y)= (Ax^2+Bxy+Cy^2), then the valueof (5A + 4B...

    Text Solution

    |

  5. If (6x)/((2x^(2) + 5x - 2)) = 1, x gt 0, then the value of x^(3) + (1)...

    Text Solution

    |

  6. If 4x^(2) - 6x + 1 = 0, then the value of 8x^(3) + (8x^(3))^(-1) is :

    Text Solution

    |

  7. If x + y + z = 0 ,then the value of ( x^(2) + y^(2) + z^(2))/( x...

    Text Solution

    |

  8. If a^2+b^2+c^2+27= 6(a+b+c), then what is the value of root (3)(a^3+b^...

    Text Solution

    |

  9. If x + (1)/(x) = 3, then x^(3) + (1)/(x^(3)) is equal to :

    Text Solution

    |

  10. If sqrt(x) - (1)/(sqrt(x)) = 4, then x^(2) + (1)/(x^(2)) is equal to :

    Text Solution

    |

  11. If a + b + c = 13 and ab + bc + ca = 54, then a^(3) + b^(3) + c^(3) - ...

    Text Solution

    |

  12. If x + (1)/(x) = sqrt(5), then x^(3) + (1)/(x^(3)) is equal to :

    Text Solution

    |

  13. If (3x-1)^3+(4x-3)^3+ (2x+1)^3= 3(3x - 1)(4x - 3)(2x +1) and x ne 1/3 ...

    Text Solution

    |

  14. If a + b + c = 11 and ab + bc + ca = 38, then a^(3) + b^(3) + c^(3) - ...

    Text Solution

    |

  15. If x-5 sqrtx-1=0, then x^2+1/x^2 is equal to : यदि x-5 sqrtx-1=0 ह...

    Text Solution

    |

  16. If sqrtx+1/sqrtx= sqrt 6, then x^2+1/x^2 is equal to: यदि sqrtx+1/s...

    Text Solution

    |

  17. If a + b + c = 8 and ab + bc + ca = 12, then a^3+b^3+c^3-3abc is equal...

    Text Solution

    |

  18. If a + b = 5 and ab = 3, then (a^3+b^3) is equal to: यदि a + b = 5 ह...

    Text Solution

    |

  19. If a + b + c = 6 and ab + bc + ca = 4 , then a^3+b^3+c^3-3abc is equal...

    Text Solution

    |

  20. If (a+ b) = 6 cm and ab =16/3, then a^3+b^3 is equal to: यदि (a+ b) ...

    Text Solution

    |