Home
Class 14
MATHS
If a + b + c = 13 and ab + bc + ca = 54,...

If `a + b + c = 13` and `ab + bc + ca = 54`, then `a^(3) + b^(3) + c^(3) - 3abc` is equal to :

A

A)793

B

B)273

C

C)91

D

D)182

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the given equations and the formula for \( a^3 + b^3 + c^3 - 3abc \). ### Step 1: Write down the given equations We have: 1. \( a + b + c = 13 \) 2. \( ab + bc + ca = 54 \) ### Step 2: Use the formula for \( a^3 + b^3 + c^3 - 3abc \) The formula we will use is: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c) \left( (a + b + c)^2 - 3(ab + ac + bc) \right) \] ### Step 3: Substitute the known values into the formula First, we calculate \( (a + b + c)^2 \): \[ (a + b + c)^2 = 13^2 = 169 \] Now substitute into the formula: \[ a^3 + b^3 + c^3 - 3abc = 13 \left( 169 - 3 \times 54 \right) \] ### Step 4: Calculate \( 3 \times 54 \) \[ 3 \times 54 = 162 \] ### Step 5: Substitute back into the equation Now we substitute this value back into our equation: \[ a^3 + b^3 + c^3 - 3abc = 13 \left( 169 - 162 \right) \] ### Step 6: Simplify the expression \[ 169 - 162 = 7 \] So we have: \[ a^3 + b^3 + c^3 - 3abc = 13 \times 7 \] ### Step 7: Calculate \( 13 \times 7 \) \[ 13 \times 7 = 91 \] ### Final Answer Thus, the value of \( a^3 + b^3 + c^3 - 3abc \) is \( \boxed{91} \). ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If a+b+c=8 and ab +bc +ca =12 , then a^(3) +b^(3) +c^(3) -3abc is equal to :

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If x + (1)/(x) = 3, then x^(3) + (1)/(x^(3)) is equal to :

    Text Solution

    |

  2. If sqrt(x) - (1)/(sqrt(x)) = 4, then x^(2) + (1)/(x^(2)) is equal to :

    Text Solution

    |

  3. If a + b + c = 13 and ab + bc + ca = 54, then a^(3) + b^(3) + c^(3) - ...

    Text Solution

    |

  4. If x + (1)/(x) = sqrt(5), then x^(3) + (1)/(x^(3)) is equal to :

    Text Solution

    |

  5. If (3x-1)^3+(4x-3)^3+ (2x+1)^3= 3(3x - 1)(4x - 3)(2x +1) and x ne 1/3 ...

    Text Solution

    |

  6. If a + b + c = 11 and ab + bc + ca = 38, then a^(3) + b^(3) + c^(3) - ...

    Text Solution

    |

  7. If x-5 sqrtx-1=0, then x^2+1/x^2 is equal to : यदि x-5 sqrtx-1=0 ह...

    Text Solution

    |

  8. If sqrtx+1/sqrtx= sqrt 6, then x^2+1/x^2 is equal to: यदि sqrtx+1/s...

    Text Solution

    |

  9. If a + b + c = 8 and ab + bc + ca = 12, then a^3+b^3+c^3-3abc is equal...

    Text Solution

    |

  10. If a + b = 5 and ab = 3, then (a^3+b^3) is equal to: यदि a + b = 5 ह...

    Text Solution

    |

  11. If a + b + c = 6 and ab + bc + ca = 4 , then a^3+b^3+c^3-3abc is equal...

    Text Solution

    |

  12. If (a+ b) = 6 cm and ab =16/3, then a^3+b^3 is equal to: यदि (a+ b) ...

    Text Solution

    |

  13. If sqrt(x) - (1)/(sqrt(x)) = sqrt(6), then x^(2) + (1)/(x^(2)) is equa...

    Text Solution

    |

  14. If a + b = 8 and ab = (32)/(3), then (a^(3) + b^(3)) is equal to :

    Text Solution

    |

  15. If sqrt(x) + (1)/(sqrt(x)) = sqrt(7), then x^(3) + (1)/(x^(3)) is equa...

    Text Solution

    |

  16. If a + b+c = 4 and ab + bc + ca = 2, then a^(3) + b^(3) + c^(3) - 3abc...

    Text Solution

    |

  17. If (a + b) = 6 and ab = 8, then (a^3+b^3) is equal to: यदि a + b) = ...

    Text Solution

    |

  18. If a + b + c = 6 and ab + bc + ca = 5, then a^3+b^3+c^3-3abc is equal ...

    Text Solution

    |

  19. If sqrt(x) + (1)/(sqrt(x)) = 2sqrt(2), then x^(2) + (1)/(x^(2)) is equ...

    Text Solution

    |

  20. If sqrt(x) - (1)/(sqrt(x)) = 2sqrt(2), then x^(2) + (1)/(x^(2)) is equ...

    Text Solution

    |