Home
Class 14
MATHS
If x + (1)/(x) = sqrt(5), then x^(3) + (...

If `x + (1)/(x) = sqrt(5)`, then `x^(3) + (1)/(x^(3))` is equal to :

A

A)`3sqrt(5)`

B

B)`4sqrt(5)`

C

C)`2sqrt(5)`

D

D)`5sqrt(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^3 + \frac{1}{x^3} \) given that \( x + \frac{1}{x} = \sqrt{5} \). ### Step-by-Step Solution: 1. **Given Equation**: Start with the equation provided in the problem: \[ x + \frac{1}{x} = \sqrt{5} \] 2. **Cube Both Sides**: We will use the identity for cubes: \[ (a + b)^3 = a^3 + b^3 + 3ab(a + b) \] Here, let \( a = x \) and \( b = \frac{1}{x} \). Thus, \[ (x + \frac{1}{x})^3 = x^3 + \frac{1}{x^3} + 3(x)(\frac{1}{x})(x + \frac{1}{x}) \] This simplifies to: \[ (x + \frac{1}{x})^3 = x^3 + \frac{1}{x^3} + 3(x + \frac{1}{x}) \] 3. **Substitute the Known Value**: Substitute \( x + \frac{1}{x} = \sqrt{5} \): \[ (\sqrt{5})^3 = x^3 + \frac{1}{x^3} + 3\sqrt{5} \] 4. **Calculate \( (\sqrt{5})^3 \)**: Calculate \( \sqrt{5} \) cubed: \[ (\sqrt{5})^3 = 5\sqrt{5} \] 5. **Set Up the Equation**: Now we have: \[ 5\sqrt{5} = x^3 + \frac{1}{x^3} + 3\sqrt{5} \] 6. **Isolate \( x^3 + \frac{1}{x^3} \)**: Rearranging gives: \[ x^3 + \frac{1}{x^3} = 5\sqrt{5} - 3\sqrt{5} \] 7. **Simplify**: This simplifies to: \[ x^3 + \frac{1}{x^3} = (5 - 3)\sqrt{5} = 2\sqrt{5} \] ### Final Answer: Thus, the value of \( x^3 + \frac{1}{x^3} \) is: \[ \boxed{2\sqrt{5}} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If x + 1/x = sqrt5 , then x^(3) + 1/x^(3) is equal to :

If sqrt(x)-(1)/(sqrt(x))=sqrt(5) , then (x^(2)+(1)/(x^(2))) is equal to :

If x+1/(x)=5 , then x^(3)+1/(x^(3)) is equal to

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If sqrt(x) - (1)/(sqrt(x)) = 4, then x^(2) + (1)/(x^(2)) is equal to :

    Text Solution

    |

  2. If a + b + c = 13 and ab + bc + ca = 54, then a^(3) + b^(3) + c^(3) - ...

    Text Solution

    |

  3. If x + (1)/(x) = sqrt(5), then x^(3) + (1)/(x^(3)) is equal to :

    Text Solution

    |

  4. If (3x-1)^3+(4x-3)^3+ (2x+1)^3= 3(3x - 1)(4x - 3)(2x +1) and x ne 1/3 ...

    Text Solution

    |

  5. If a + b + c = 11 and ab + bc + ca = 38, then a^(3) + b^(3) + c^(3) - ...

    Text Solution

    |

  6. If x-5 sqrtx-1=0, then x^2+1/x^2 is equal to : यदि x-5 sqrtx-1=0 ह...

    Text Solution

    |

  7. If sqrtx+1/sqrtx= sqrt 6, then x^2+1/x^2 is equal to: यदि sqrtx+1/s...

    Text Solution

    |

  8. If a + b + c = 8 and ab + bc + ca = 12, then a^3+b^3+c^3-3abc is equal...

    Text Solution

    |

  9. If a + b = 5 and ab = 3, then (a^3+b^3) is equal to: यदि a + b = 5 ह...

    Text Solution

    |

  10. If a + b + c = 6 and ab + bc + ca = 4 , then a^3+b^3+c^3-3abc is equal...

    Text Solution

    |

  11. If (a+ b) = 6 cm and ab =16/3, then a^3+b^3 is equal to: यदि (a+ b) ...

    Text Solution

    |

  12. If sqrt(x) - (1)/(sqrt(x)) = sqrt(6), then x^(2) + (1)/(x^(2)) is equa...

    Text Solution

    |

  13. If a + b = 8 and ab = (32)/(3), then (a^(3) + b^(3)) is equal to :

    Text Solution

    |

  14. If sqrt(x) + (1)/(sqrt(x)) = sqrt(7), then x^(3) + (1)/(x^(3)) is equa...

    Text Solution

    |

  15. If a + b+c = 4 and ab + bc + ca = 2, then a^(3) + b^(3) + c^(3) - 3abc...

    Text Solution

    |

  16. If (a + b) = 6 and ab = 8, then (a^3+b^3) is equal to: यदि a + b) = ...

    Text Solution

    |

  17. If a + b + c = 6 and ab + bc + ca = 5, then a^3+b^3+c^3-3abc is equal ...

    Text Solution

    |

  18. If sqrt(x) + (1)/(sqrt(x)) = 2sqrt(2), then x^(2) + (1)/(x^(2)) is equ...

    Text Solution

    |

  19. If sqrt(x) - (1)/(sqrt(x)) = 2sqrt(2), then x^(2) + (1)/(x^(2)) is equ...

    Text Solution

    |

  20. If a+b+c = 6 and a^(3) + b^(3) + c^(3) - 3abc = 126, then ab + bc + ca...

    Text Solution

    |