Home
Class 14
MATHS
If a + b + c = 11 and ab + bc + ca = 38,...

If `a + b + c = 11` and `ab + bc + ca = 38`, then `a^(3) + b^(3) + c^(3) - 3abc` is equal to :

A

44

B

77

C

55

D

66

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^3 + b^3 + c^3 - 3abc \) given the equations \( a + b + c = 11 \) and \( ab + bc + ca = 38 \). ### Step-by-Step Solution: 1. **Use the identity for cubes**: We know the identity: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca) \] We need to find \( a^2 + b^2 + c^2 \) first. 2. **Find \( a^2 + b^2 + c^2 \)**: We can use the square of the sum of \( a, b, c \): \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca) \] Substituting the known values: \[ 11^2 = a^2 + b^2 + c^2 + 2 \cdot 38 \] This simplifies to: \[ 121 = a^2 + b^2 + c^2 + 76 \] Rearranging gives: \[ a^2 + b^2 + c^2 = 121 - 76 = 45 \] 3. **Substitute into the identity**: Now we have \( a + b + c = 11 \) and \( a^2 + b^2 + c^2 = 45 \). We can substitute these into the identity: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca) \] We need to find \( a^2 + b^2 + c^2 - ab - bc - ca \): \[ a^2 + b^2 + c^2 - (ab + bc + ca) = 45 - 38 = 7 \] 4. **Calculate \( a^3 + b^3 + c^3 - 3abc \)**: Now substituting back into the identity: \[ a^3 + b^3 + c^3 - 3abc = 11 \cdot 7 = 77 \] Thus, the final answer is: \[ \boxed{77} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If a+b+c=8 and ab +bc +ca =12 , then a^(3) +b^(3) +c^(3) -3abc is equal to :

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If x + (1)/(x) = sqrt(5), then x^(3) + (1)/(x^(3)) is equal to :

    Text Solution

    |

  2. If (3x-1)^3+(4x-3)^3+ (2x+1)^3= 3(3x - 1)(4x - 3)(2x +1) and x ne 1/3 ...

    Text Solution

    |

  3. If a + b + c = 11 and ab + bc + ca = 38, then a^(3) + b^(3) + c^(3) - ...

    Text Solution

    |

  4. If x-5 sqrtx-1=0, then x^2+1/x^2 is equal to : यदि x-5 sqrtx-1=0 ह...

    Text Solution

    |

  5. If sqrtx+1/sqrtx= sqrt 6, then x^2+1/x^2 is equal to: यदि sqrtx+1/s...

    Text Solution

    |

  6. If a + b + c = 8 and ab + bc + ca = 12, then a^3+b^3+c^3-3abc is equal...

    Text Solution

    |

  7. If a + b = 5 and ab = 3, then (a^3+b^3) is equal to: यदि a + b = 5 ह...

    Text Solution

    |

  8. If a + b + c = 6 and ab + bc + ca = 4 , then a^3+b^3+c^3-3abc is equal...

    Text Solution

    |

  9. If (a+ b) = 6 cm and ab =16/3, then a^3+b^3 is equal to: यदि (a+ b) ...

    Text Solution

    |

  10. If sqrt(x) - (1)/(sqrt(x)) = sqrt(6), then x^(2) + (1)/(x^(2)) is equa...

    Text Solution

    |

  11. If a + b = 8 and ab = (32)/(3), then (a^(3) + b^(3)) is equal to :

    Text Solution

    |

  12. If sqrt(x) + (1)/(sqrt(x)) = sqrt(7), then x^(3) + (1)/(x^(3)) is equa...

    Text Solution

    |

  13. If a + b+c = 4 and ab + bc + ca = 2, then a^(3) + b^(3) + c^(3) - 3abc...

    Text Solution

    |

  14. If (a + b) = 6 and ab = 8, then (a^3+b^3) is equal to: यदि a + b) = ...

    Text Solution

    |

  15. If a + b + c = 6 and ab + bc + ca = 5, then a^3+b^3+c^3-3abc is equal ...

    Text Solution

    |

  16. If sqrt(x) + (1)/(sqrt(x)) = 2sqrt(2), then x^(2) + (1)/(x^(2)) is equ...

    Text Solution

    |

  17. If sqrt(x) - (1)/(sqrt(x)) = 2sqrt(2), then x^(2) + (1)/(x^(2)) is equ...

    Text Solution

    |

  18. If a+b+c = 6 and a^(3) + b^(3) + c^(3) - 3abc = 126, then ab + bc + ca...

    Text Solution

    |

  19. If a + b = 5 and ab = 3, then (a^3+b^3) is equal to: यदि a + b = 5 ह...

    Text Solution

    |

  20. If a + b + c = 7 and ab +bc + ca = 1, then a^(3) + b^(3) + c^(3) - 3ab...

    Text Solution

    |