Home
Class 14
MATHS
If a + b = 8 and ab = (32)/(3), then (a^...

If `a + b = 8` and `ab = (32)/(3)`, then `(a^(3) + b^(3))` is equal to :

A

256

B

128

C

320

D

384

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( a^3 + b^3 \) given that \( a + b = 8 \) and \( ab = \frac{32}{3} \), we can use the formula for the sum of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] ### Step 1: Calculate \( a^2 + b^2 \) We know that: \[ a^2 + b^2 = (a + b)^2 - 2ab \] Substituting the known values: \[ a + b = 8 \quad \text{and} \quad ab = \frac{32}{3} \] Calculating \( (a + b)^2 \): \[ (a + b)^2 = 8^2 = 64 \] Now substituting into the formula for \( a^2 + b^2 \): \[ a^2 + b^2 = 64 - 2 \left(\frac{32}{3}\right) \] Calculating \( 2 \times \frac{32}{3} \): \[ 2 \times \frac{32}{3} = \frac{64}{3} \] Now substituting this back: \[ a^2 + b^2 = 64 - \frac{64}{3} \] Finding a common denominator: \[ 64 = \frac{192}{3} \] Thus, \[ a^2 + b^2 = \frac{192}{3} - \frac{64}{3} = \frac{128}{3} \] ### Step 2: Calculate \( a^2 - ab + b^2 \) Now we can find \( a^2 - ab + b^2 \): \[ a^2 - ab + b^2 = a^2 + b^2 - ab \] Substituting the values we have: \[ a^2 - ab + b^2 = \frac{128}{3} - \frac{32}{3} = \frac{128 - 32}{3} = \frac{96}{3} = 32 \] ### Step 3: Calculate \( a^3 + b^3 \) Now we can substitute back into the formula for \( a^3 + b^3 \): \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Substituting the known values: \[ a^3 + b^3 = 8 \times 32 = 256 \] Thus, the value of \( a^3 + b^3 \) is: \[ \boxed{256} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If a+b =5 and ab = 3 , then (a^(3)+b^(3)) is equal to :

If (a-b)=4 and ab = 2, then (a^(3)-b^(3)) is equal to :

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If (a+ b) = 6 cm and ab =16/3, then a^3+b^3 is equal to: यदि (a+ b) ...

    Text Solution

    |

  2. If sqrt(x) - (1)/(sqrt(x)) = sqrt(6), then x^(2) + (1)/(x^(2)) is equa...

    Text Solution

    |

  3. If a + b = 8 and ab = (32)/(3), then (a^(3) + b^(3)) is equal to :

    Text Solution

    |

  4. If sqrt(x) + (1)/(sqrt(x)) = sqrt(7), then x^(3) + (1)/(x^(3)) is equa...

    Text Solution

    |

  5. If a + b+c = 4 and ab + bc + ca = 2, then a^(3) + b^(3) + c^(3) - 3abc...

    Text Solution

    |

  6. If (a + b) = 6 and ab = 8, then (a^3+b^3) is equal to: यदि a + b) = ...

    Text Solution

    |

  7. If a + b + c = 6 and ab + bc + ca = 5, then a^3+b^3+c^3-3abc is equal ...

    Text Solution

    |

  8. If sqrt(x) + (1)/(sqrt(x)) = 2sqrt(2), then x^(2) + (1)/(x^(2)) is equ...

    Text Solution

    |

  9. If sqrt(x) - (1)/(sqrt(x)) = 2sqrt(2), then x^(2) + (1)/(x^(2)) is equ...

    Text Solution

    |

  10. If a+b+c = 6 and a^(3) + b^(3) + c^(3) - 3abc = 126, then ab + bc + ca...

    Text Solution

    |

  11. If a + b = 5 and ab = 3, then (a^3+b^3) is equal to: यदि a + b = 5 ह...

    Text Solution

    |

  12. If a + b + c = 7 and ab +bc + ca = 1, then a^(3) + b^(3) + c^(3) - 3ab...

    Text Solution

    |

  13. If a - b = 5 and ab = 2 , then (a^3-b^3) is equal to: यदि a - b = 5 ...

    Text Solution

    |

  14. If sqrt(x) - (1)/(sqrt(x)) = 3sqrt(2), then x^(2) + (1)/(x^(2)) is equ...

    Text Solution

    |

  15. If (a - b) = 4 and ab = 2, then (a^3-b^3) is equal to: यदि (a - b) =...

    Text Solution

    |

  16. If sqrt(x) - (1)/(sqrt(x)) = sqrt(5) then x^(2) + (1)/(x^(2)) is equal...

    Text Solution

    |

  17. If a + b +c = 8 and ab + bc + ca = 20, then a^3+b^3+c^3-3abc is equal...

    Text Solution

    |

  18. If sqrt(x) + (1)/(sqrt(x)) = sqrt(6), then x^(2) + (1)/(x^(2)) is equa...

    Text Solution

    |

  19. If a + b + c = 10 and ab + bc + ca = 32 then a^(3) + b^(3) + c^(3) - ...

    Text Solution

    |

  20. If a - b = 5 and ab = 6, then (a^3-b^3) is equal to: यदि a - b = 5...

    Text Solution

    |