Home
Class 14
MATHS
If sqrt(x) + (1)/(sqrt(x)) = sqrt(6), th...

If `sqrt(x) + (1)/(sqrt(x)) = sqrt(6)`, then `x^(2) + (1)/(x^(2))` is equal to :

A

A)18

B

B)14

C

C)16

D

D)12

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{x} + \frac{1}{\sqrt{x}} = \sqrt{6} \) and find \( x^2 + \frac{1}{x^2} \), we can follow these steps: ### Step 1: Let \( y = \sqrt{x} \) We start by substituting \( y \) for \( \sqrt{x} \). This gives us the equation: \[ y + \frac{1}{y} = \sqrt{6} \] ### Step 2: Square both sides Next, we square both sides of the equation to eliminate the fraction: \[ \left(y + \frac{1}{y}\right)^2 = (\sqrt{6})^2 \] This simplifies to: \[ y^2 + 2 + \frac{1}{y^2} = 6 \] ### Step 3: Rearrange the equation Now, we can rearrange the equation to isolate \( y^2 + \frac{1}{y^2} \): \[ y^2 + \frac{1}{y^2} = 6 - 2 \] This simplifies to: \[ y^2 + \frac{1}{y^2} = 4 \] ### Step 4: Substitute back to find \( x^2 + \frac{1}{x^2} \) Since \( y = \sqrt{x} \), we have \( y^2 = x \). Therefore, we can express \( x^2 + \frac{1}{x^2} \) in terms of \( y \): \[ x^2 + \frac{1}{x^2} = y^4 + \frac{1}{y^4} \] To find \( y^4 + \frac{1}{y^4} \), we can use the identity: \[ y^4 + \frac{1}{y^4} = \left(y^2 + \frac{1}{y^2}\right)^2 - 2 \] Substituting \( y^2 + \frac{1}{y^2} = 4 \): \[ y^4 + \frac{1}{y^4} = 4^2 - 2 = 16 - 2 = 14 \] ### Final Answer Thus, we find that: \[ x^2 + \frac{1}{x^2} = 14 \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If sqrt(x)-(1)/(sqrt(x))=sqrt(5) , then (x^(2)+(1)/(x^(2))) is equal to :

lim_(x to 0) (sqrt(1 + x + x^(2)) - sqrt(x + 1))/(2X^(2)) is equal to

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If sqrt(x) - (1)/(sqrt(x)) = sqrt(5) then x^(2) + (1)/(x^(2)) is equal...

    Text Solution

    |

  2. If a + b +c = 8 and ab + bc + ca = 20, then a^3+b^3+c^3-3abc is equal...

    Text Solution

    |

  3. If sqrt(x) + (1)/(sqrt(x)) = sqrt(6), then x^(2) + (1)/(x^(2)) is equa...

    Text Solution

    |

  4. If a + b + c = 10 and ab + bc + ca = 32 then a^(3) + b^(3) + c^(3) - ...

    Text Solution

    |

  5. If a - b = 5 and ab = 6, then (a^3-b^3) is equal to: यदि a - b = 5...

    Text Solution

    |

  6. If x + (1)/( x) = 5 then x^(3) + (1)/( x^(3)) is equal to

    Text Solution

    |

  7. If (x-5)^3+(x-6)^3+(x-7)^3= 3 (x - 5) (x - 6) (x - 7), then what is th...

    Text Solution

    |

  8. If a^(3) - b^(3) = 208 and a - b = 4 then (a + b)^(2) - ab is equ...

    Text Solution

    |

  9. If x^8-1442x^4+1=0, then a possible value of x-1/x is: यदि x^8-1442x...

    Text Solution

    |

  10. If sqrt(86-60sqrt2)=a-b sqrt2, then what will be the value of sqrt(a^2...

    Text Solution

    |

  11. If a^2+b^2+c^2+96= 8(a+b-2c), then sqrt(ab-bc+ca) is equal to : यदि...

    Text Solution

    |

  12. If x + y + z = 13, x^2+y^2+z^2=133 and x^3+y^3+z^3=847, then the value...

    Text Solution

    |

  13. Let a,b and c be the fractions such that a prec b prec c. If c is div...

    Text Solution

    |

  14. If (a+b) : (b+c) : (c+a) = 7 : 6 : 5 and a+b+c = 27, then what will be...

    Text Solution

    |

  15. If x=sqrt(1+ sqrt3/2)-sqrt(1- sqrt3/2), then the value of (sqrt2-x)/(s...

    Text Solution

    |

  16. If a^3+b^3=218 and a+b=2, tthen the value of ab is : यदि a^3+b^3=21...

    Text Solution

    |

  17. If 2 sqrt2 x^3-3 sqrt3 y^3=(sqrt2x- sqrt3 y) (Ax^2+By^2+Cxy), then the...

    Text Solution

    |

  18. Three fractions, x,y and z, are such that x succ y succ z. When the sm...

    Text Solution

    |

  19. If x+1/(16x)=3, then the value of 16x^3+ 1/(256x^3) is: यदि x+1/(16...

    Text Solution

    |

  20. If x+y+z = 2, xy+yz+zx = -11 and xyz = -12, then what is the value of ...

    Text Solution

    |