Home
Class 14
MATHS
If x = (sqrt(5) - sqrt(3))/(sqrt(5) + sq...

If `x = (sqrt(5) - sqrt(3))/(sqrt(5) + sqrt(3))` and y is the reciprocal of x, then what is the value of `(x^(3) + y^(3))`

A

488

B

504

C

472

D

476

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^3 + y^3 \) given that \( x = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}} \) and \( y \) is the reciprocal of \( x \). ### Step 1: Calculate \( y \) Since \( y \) is the reciprocal of \( x \), we have: \[ y = \frac{1}{x} = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} \] ### Step 2: Use the identity for \( x^3 + y^3 \) We can use the identity: \[ x^3 + y^3 = (x + y)(x^2 - xy + y^2) \] To use this identity, we need to find \( x + y \) and \( xy \). ### Step 3: Calculate \( x + y \) \[ x + y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}} + \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}} \] To add these fractions, we need a common denominator: \[ x + y = \frac{(\sqrt{5} - \sqrt{3})^2 + (\sqrt{5} + \sqrt{3})^2}{(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})} \] ### Step 4: Simplify the numerator Calculating the squares: \[ (\sqrt{5} - \sqrt{3})^2 = 5 - 2\sqrt{15} + 3 = 8 - 2\sqrt{15} \] \[ (\sqrt{5} + \sqrt{3})^2 = 5 + 2\sqrt{15} + 3 = 8 + 2\sqrt{15} \] Adding these: \[ (\sqrt{5} - \sqrt{3})^2 + (\sqrt{5} + \sqrt{3})^2 = (8 - 2\sqrt{15}) + (8 + 2\sqrt{15}) = 16 \] ### Step 5: Calculate the denominator The denominator simplifies as follows: \[ (\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3}) = 5 - 3 = 2 \] ### Step 6: Combine results Thus, \[ x + y = \frac{16}{2} = 8 \] ### Step 7: Calculate \( xy \) \[ xy = x \cdot y = \left(\frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\right) \cdot \left(\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\right) = 1 \] ### Step 8: Calculate \( x^2 + y^2 \) Using the identity \( x^2 + y^2 = (x + y)^2 - 2xy \): \[ x^2 + y^2 = 8^2 - 2 \cdot 1 = 64 - 2 = 62 \] ### Step 9: Substitute into the identity for \( x^3 + y^3 \) Now substituting into the identity: \[ x^3 + y^3 = (x + y)((x^2 + y^2) - xy) = 8(62 - 1) = 8 \cdot 61 = 488 \] ### Final Answer Thus, the value of \( x^3 + y^3 \) is: \[ \boxed{488} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If x=(sqrt5- sqrt3)/(sqrt5+ sqrt3) and y is the reciprocal of x, then what is the value of (x^3+ y^3) ? यदि x=(sqrt5- sqrt3)/(sqrt5+ sqrt3) है तथा y, x का पारस्परिक है, तो (x^3+ y^3) का मान ज्ञात करें |

sqrt(2)x + sqrt(3)y=0 sqrt(5)x - sqrt(2)y=0

If x = (sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) , find the value of x^(3) + (1)/(x^(3)) .

If x=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)), then the value of x^(2)+(1)/(x^(2))

If (sqrt(5 + x) + sqrt(5 - x))/(sqrt(5 + x) - sqrt(5 - x)) = 3 , then what is the value of x ?

{:(sqrt(5)x - sqrt(7)y = 0),(sqrt(7)x - sqrt(3)y = 0):}

If (sqrt(x + 2) + sqrt(x-3))/(sqrt(x+2) - sqrt(x - 3)) = 5 , then the value of x is

If 2sqrtx= (sqrt5 + sqrt3)/(sqrt5 - sqrt3)-(sqrt5 - sqrt3)/(sqrt5 + sqrt3) then what is the value of x ?

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If (5x+1)^3+(x-3)^3+8 (3x-4)^3= 6(5x+1) (x-3)(3x-4), then x is equal t...

    Text Solution

    |

  2. If 8x^3-27y^3= (Ax+By)(Cx^2-Dy^2+6xy) , then (A+B+C-D) is equal to : ...

    Text Solution

    |

  3. If x = (sqrt(5) - sqrt(3))/(sqrt(5) + sqrt(3)) and y is the reciprocal...

    Text Solution

    |

  4. If sqrt(10-2 sqrt21)+ sqrt(8+2 sqrt15)= sqrta+ sqrt b, where a and b a...

    Text Solution

    |

  5. ab(a-b)+bc(b-c)+ca(c-a) is equal to : ab(a-b)+bc(b-c)+ca(c-a) किसके ...

    Text Solution

    |

  6. Given that (5x-3)^3+(2x+5)^3+27 (4-3x)^3 =9(3-5x)(2x+5)(3x-4) ,then th...

    Text Solution

    |

  7. If 5 sqrt5 x^3+2 sqrt2 y^3 =(Ax+ sqrt2 y) (Bx^2+2y^2+Cxy), then the va...

    Text Solution

    |

  8. If (3(x^2+1)-7x)/(3x)=6, x ne 0 then the value of sqrtx+1/sqrtx is: ...

    Text Solution

    |

  9. Let a,b and c be the fractions such that a prec b prec c. If c is div...

    Text Solution

    |

  10. Let x= root(6)(27)- sqrt(6 3/4) and y= (sqrt 45+ sqrt 605+ sqrt 245)/(...

    Text Solution

    |

  11. If (5x+2y) : (10x+3y) = 5:9, then (2x^2+3y^2 ):(4x^2+9y^2)=? यदि (5...

    Text Solution

    |

  12. If x+y+z=6, xyz=-10 and x^2+y^2+z^2=30, then what is the value of (x^3...

    Text Solution

    |

  13. If x + y = 7 and xy = 10, then the value of x^3+y^3 is: यदि x + y = ...

    Text Solution

    |

  14. If 8x^2+y^2- 12x - 4xy + 9= 0 , then the value of (14x - 5y) is: यदि...

    Text Solution

    |

  15. If x + y + z = 19 , xyz = 216 and xy + yz + zx = 114, then the value o...

    Text Solution

    |

  16. If a^2+4b^2+49c^2+18=2(2b + 28c-a), then the value of (3a + 2b + 7c) i...

    Text Solution

    |

  17. If a + b + c = 5 ,a^2+b^2+c^2=27 and a^3+b^3+c^3=125, then the value o...

    Text Solution

    |

  18. If 3 sqrt3 x^3-2sqrt2 y^3=(sqrt3x- sqrt2y) (Ax^2-Bxy+Cy^2), then the v...

    Text Solution

    |

  19. If 24 sqrt3 x^3+2 sqrt2 y^3=(2 sqrt3x+ sqrt2 y)(Ax^2+Bxy+Cy^2), then t...

    Text Solution

    |

  20. If a+b+c = 4 and ab + bc + ca = 1, then the value of a^(3) + b^(3) + c...

    Text Solution

    |