Home
Class 14
MATHS
If x is real and x^(4) - 5x^(2) - 1 = 0,...

If x is real and `x^(4) - 5x^(2) - 1 = 0`, when the value of `(x^(6) - 3x^(2) + (3)/(x^(2)) - (1)/(x^(6)) + 1)` is :

A

126

B

110

C

116

D

96

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^4 - 5x^2 - 1 = 0 \) and find the value of \( x^6 - 3x^2 + \frac{3}{x^2} - \frac{1}{x^6} + 1 \), we can follow these steps: ### Step 1: Substitute \( y = x^2 \) We start by letting \( y = x^2 \). Then the equation becomes: \[ y^2 - 5y - 1 = 0 \] ### Step 2: Solve the quadratic equation We can use the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 1, b = -5, c = -1 \): \[ y = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] \[ y = \frac{5 \pm \sqrt{25 + 4}}{2} \] \[ y = \frac{5 \pm \sqrt{29}}{2} \] ### Step 3: Find \( x^2 \) Thus, we have two possible values for \( y \): \[ y_1 = \frac{5 + \sqrt{29}}{2}, \quad y_2 = \frac{5 - \sqrt{29}}{2} \] Since \( y = x^2 \), we can take the positive roots since \( x \) is real. ### Step 4: Calculate \( x^6 - \frac{1}{x^6} \) Next, we need to find \( x^6 - \frac{1}{x^6} \). We can use the identity: \[ x^6 - \frac{1}{x^6} = (x^2 - \frac{1}{x^2})^3 + 3(x^2 - \frac{1}{x^2}) \] We first need to find \( x^2 - \frac{1}{x^2} \). ### Step 5: Calculate \( x^2 - \frac{1}{x^2} \) From the original equation \( x^2 - \frac{1}{x^2} = 5 \), we can cube this: \[ (x^2 - \frac{1}{x^2})^3 = 5^3 = 125 \] Now substituting back: \[ x^6 - \frac{1}{x^6} = 125 + 3(5) = 125 + 15 = 140 \] ### Step 6: Calculate the final expression Now we need to find: \[ x^6 - 3x^2 + \frac{3}{x^2} - \frac{1}{x^6} + 1 \] We already have \( x^6 - \frac{1}{x^6} = 140 \). We also know: \[ -3x^2 + \frac{3}{x^2} = -3y + \frac{3}{y} \] Substituting \( y = \frac{5 + \sqrt{29}}{2} \): \[ -3y + \frac{3}{y} = -3\left(\frac{5 + \sqrt{29}}{2}\right) + \frac{3}{\frac{5 + \sqrt{29}}{2}} = -\frac{15 + 3\sqrt{29}}{2} + \frac{6}{5 + \sqrt{29}} \] Calculating \( \frac{6}{5 + \sqrt{29}} \) requires rationalizing the denominator. ### Step 7: Combine everything Finally, we combine: \[ x^6 - 3x^2 + \frac{3}{x^2} - \frac{1}{x^6} + 1 = 140 - 15 + 1 = 126 \] Thus, the final value is: \[ \boxed{126} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If x^(4) - 3x^(2) - 1 = 0 , then the value of (x^(6)-3x^(2)+(3)/(x^(2))-(1)/(x^(6))+1) is :

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If 40sqrt(5)x^(3) - 3sqrt(3)y^(3) = (2sqrt(5)x - sqrt(3)y) xx (Ax^(2) ...

    Text Solution

    |

  2. If x^(2) + 1 = 3x, then the value of ((x^(4) + x^(-2)))/((x^(2) + 5x+1...

    Text Solution

    |

  3. If x is real and x^(4) - 5x^(2) - 1 = 0, when the value of (x^(6) - 3x...

    Text Solution

    |

  4. If 24 sqrt3 x^3+2 sqrt2 y^3=(2 sqrt3x+ sqrt2 y)(Ax^2+Bxy+Cy^2), then t...

    Text Solution

    |

  5. If x + (1)/(x) = 7, then x^(3) + (1)/(x^(3)) is equal to :

    Text Solution

    |

  6. If 250 sqrt2 x^3-5 sqrt5 y^3=(5 sqrt2x- sqrt5y)(Ax^2+Cy^2+Bxy), then ...

    Text Solution

    |

  7. If x ne -1,2 and 5, then the simplified value of {(2(x^3-8))/(x^2-x-2)...

    Text Solution

    |

  8. If x + y + z = 19, x^(2) + y^(2) + z^(2) = 133, then the value of x^(3...

    Text Solution

    |

  9. If 8(x+y)^3-(x-y)^3=(x + 3y) (Ax^2+Cy^2+Bxy), then the value of (A-B-...

    Text Solution

    |

  10. If 9a^(2) + 16b^(2) + c^(2) + 25 = 24, (a+b), then the value of (3a + ...

    Text Solution

    |

  11. If x^2- 6x + 1= 0, then the value of (x^4+1/x^2) div (x^2+1) is यदि ...

    Text Solution

    |

  12. If x + y + z = 3 and xy + yz + zx = -18, then what is the value of x^(...

    Text Solution

    |

  13. If 8(a+b)^(3) + (a-b)^(3) = (3a+b)(A a^(2) + Bab + Cb^(2)), then what ...

    Text Solution

    |

  14. If (x-7)^3+(x-8)^3+(x+6)^3= 3 (x - 7) (x -8) (x+6), then what is the v...

    Text Solution

    |

  15. If x - (1)/(x) = 10, then x^(3) - (1)/(x^(3)) is equal to :

    Text Solution

    |

  16. If a^(2) + b^(2) = 88 and ab = 6, (a gt 0, b gt 0) then what is the va...

    Text Solution

    |

  17. If x^4+x^(-4)=2207, (x succ 0) then the value of x+x^-1 is: यदि x^4...

    Text Solution

    |

  18. If (3x-7)^3+(3x-8)^3+ (3x+6)^3= 3(3x - 7)(3x - 8)(3x +6) then what is ...

    Text Solution

    |

  19. If x^4+x^(-4)=1442, (x succ 0) then the value of x+x^-1 is: यदि x^4+...

    Text Solution

    |

  20. If x + (1)/(x) = 10, then x^(3) + (1)/(x^(3)) is equal to :

    Text Solution

    |