Home
Class 14
MATHS
If x + y + z = 19, x^(2) + y^(2) + z^(2)...

If `x + y + z = 19, x^(2) + y^(2) + z^(2) = 133`, then the value of `x^(3) + y^(3) + z^(3) - 3xyz` is :

A

361

B

342

C

380

D

352

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^3 + y^3 + z^3 - 3xyz \) given the equations: 1. \( x + y + z = 19 \) 2. \( x^2 + y^2 + z^2 = 133 \) We can use the identity: \[ x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) \] ### Step 1: Calculate \( xy + yz + zx \) From the identity: \[ (x + y + z)^2 = x^2 + y^2 + z^2 + 2(xy + yz + zx) \] We can rearrange this to find \( xy + yz + zx \): \[ xy + yz + zx = \frac{(x + y + z)^2 - (x^2 + y^2 + z^2)}{2} \] Substituting the values we have: \[ xy + yz + zx = \frac{19^2 - 133}{2} \] Calculating \( 19^2 \): \[ 19^2 = 361 \] Now substituting back: \[ xy + yz + zx = \frac{361 - 133}{2} = \frac{228}{2} = 114 \] ### Step 2: Substitute into the identity Now we can substitute \( x + y + z \), \( x^2 + y^2 + z^2 \), and \( xy + yz + zx \) into the identity: \[ x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) \] Substituting the known values: \[ x^3 + y^3 + z^3 - 3xyz = 19 \left( 133 - 114 \right) \] Calculating \( 133 - 114 \): \[ 133 - 114 = 19 \] Now substituting this back into the equation: \[ x^3 + y^3 + z^3 - 3xyz = 19 \times 19 = 361 \] ### Final Answer Thus, the value of \( x^3 + y^3 + z^3 - 3xyz \) is: \[ \boxed{361} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If x=222,y=223,z=225 then the value of x^(3)+y^(3)+z^(3)-3xyz is

If x + y + z = 6 and x^2 + y^2 + z^2= 20 then the value of x^3 + y^3 + z^3 - 3xyz is

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If 250 sqrt2 x^3-5 sqrt5 y^3=(5 sqrt2x- sqrt5y)(Ax^2+Cy^2+Bxy), then ...

    Text Solution

    |

  2. If x ne -1,2 and 5, then the simplified value of {(2(x^3-8))/(x^2-x-2)...

    Text Solution

    |

  3. If x + y + z = 19, x^(2) + y^(2) + z^(2) = 133, then the value of x^(3...

    Text Solution

    |

  4. If 8(x+y)^3-(x-y)^3=(x + 3y) (Ax^2+Cy^2+Bxy), then the value of (A-B-...

    Text Solution

    |

  5. If 9a^(2) + 16b^(2) + c^(2) + 25 = 24, (a+b), then the value of (3a + ...

    Text Solution

    |

  6. If x^2- 6x + 1= 0, then the value of (x^4+1/x^2) div (x^2+1) is यदि ...

    Text Solution

    |

  7. If x + y + z = 3 and xy + yz + zx = -18, then what is the value of x^(...

    Text Solution

    |

  8. If 8(a+b)^(3) + (a-b)^(3) = (3a+b)(A a^(2) + Bab + Cb^(2)), then what ...

    Text Solution

    |

  9. If (x-7)^3+(x-8)^3+(x+6)^3= 3 (x - 7) (x -8) (x+6), then what is the v...

    Text Solution

    |

  10. If x - (1)/(x) = 10, then x^(3) - (1)/(x^(3)) is equal to :

    Text Solution

    |

  11. If a^(2) + b^(2) = 88 and ab = 6, (a gt 0, b gt 0) then what is the va...

    Text Solution

    |

  12. If x^4+x^(-4)=2207, (x succ 0) then the value of x+x^-1 is: यदि x^4...

    Text Solution

    |

  13. If (3x-7)^3+(3x-8)^3+ (3x+6)^3= 3(3x - 7)(3x - 8)(3x +6) then what is ...

    Text Solution

    |

  14. If x^4+x^(-4)=1442, (x succ 0) then the value of x+x^-1 is: यदि x^4+...

    Text Solution

    |

  15. If x + (1)/(x) = 10, then x^(3) + (1)/(x^(3)) is equal to :

    Text Solution

    |

  16. If a^(2) + b^(2) = 99 and ab = 11, (a gt 0, b gt 0) then the value of ...

    Text Solution

    |

  17. If a^(2) + b^(2) = 135 and ab = 7, (a gt 0, b gt 0) then the value of ...

    Text Solution

    |

  18. If (2x-7)^3+(2x-8)^3+(2x-3)^3= 3(2x -7)(2x - 8)(2x- 3 ) , then what is...

    Text Solution

    |

  19. If x^4+x^(-4)=1442, (x succ 0) then the value of x+x^-1 is: यदि x^4+...

    Text Solution

    |

  20. If x = sqrt(3) - sqrt(2), then the value of x^(3) - x^(-3) is :

    Text Solution

    |