Home
Class 14
MATHS
If 3^(3sqrt(x)) + 4^(3sqrt(x)) = 5^(3sqr...

If `3^(3sqrt(x)) + 4^(3sqrt(x)) = 5^(3sqrt(x))` then the value of x is :

A

8

B

2

C

4

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3^{3\sqrt{x}} + 4^{3\sqrt{x}} = 5^{3\sqrt{x}} \), we can proceed with the following steps: ### Step 1: Let \( y = 3\sqrt{x} \) We start by substituting \( y \) for \( 3\sqrt{x} \). This gives us the equation: \[ 3^y + 4^y = 5^y \] ### Step 2: Analyze the equation We can recognize that this equation resembles the Pythagorean theorem, where \( 3^2 + 4^2 = 5^2 \). This suggests that \( y \) might have a specific value that satisfies this equation. ### Step 3: Test \( y = 2 \) Let’s test if \( y = 2 \) satisfies the equation: \[ 3^2 + 4^2 = 5^2 \] Calculating each term: \[ 9 + 16 = 25 \] This is true, so \( y = 2 \) is indeed a solution. ### Step 4: Substitute back to find \( x \) Recall that we set \( y = 3\sqrt{x} \). Now we can substitute back to find \( x \): \[ 3\sqrt{x} = 2 \] ### Step 5: Solve for \( \sqrt{x} \) Now, divide both sides by 3: \[ \sqrt{x} = \frac{2}{3} \] ### Step 6: Square both sides to find \( x \) Finally, square both sides to solve for \( x \): \[ x = \left(\frac{2}{3}\right)^2 = \frac{4}{9} \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{\frac{4}{9}} \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

((1+x).3sqrt(x))/(sqrt(x))

If (sqrt(x + 2) + sqrt(x-3))/(sqrt(x+2) - sqrt(x - 3)) = 5 , then the value of x is

If sqrt3x - 2=2sqrt3 + 4 , then the value of x is

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If (2x+7)^3+(2x+8)^3+(2x+3)^3= 3(2x + 7)(2x +8)(2x +3) , then what is ...

    Text Solution

    |

  2. If (2x+7)^3+(2x+8)^3+(2x+3)^3= 3(2x + 7)(2x +8)(2x +3) , then what is ...

    Text Solution

    |

  3. If 3^(3sqrt(x)) + 4^(3sqrt(x)) = 5^(3sqrt(x)) then the value of x is :

    Text Solution

    |

  4. If x=2-sqrt3 then the value of x^3-x^-3 is: यदि x=2-sqrt3 है, तो x^3...

    Text Solution

    |

  5. If (x-8)^3+(2x+16)^3+(2x-13)^3= 3 [(x - 8) (2x +16) (2x -13)], then wh...

    Text Solution

    |

  6. If 3^(root(4)(x))+4^(root(4)(x))=5^(root(4)(x)), then the value of x i...

    Text Solution

    |

  7. If x = 2 + sqrt(3) then the value of x^(3) + x^(-3) is :

    Text Solution

    |

  8. If x = 2 + sqrt(3), then the value of x^(3) - x^(-3) is :

    Text Solution

    |

  9. If 6^(root(4)(x))+8^(root(4)(x))=10^(root(4)(x)), then the value of x ...

    Text Solution

    |

  10. If (x-7)^3+(2x+8)^3+(2x-3)^3= 3 (x - 7) (2x +8) (2x-3), then what is t...

    Text Solution

    |

  11. If a^3+b^3=1344 and a+b= 28, then (a+b)^2 -3ab is equal to: यदि a^3...

    Text Solution

    |

  12. If x = 2 + sqrt(5) then the value of (x^(3) - x^(-3)) is :

    Text Solution

    |

  13. If x^4+x^(-4)=47, (x succ 0) then the value of (2x-3)^2 is: यदि x^...

    Text Solution

    |

  14. If x = 2 + sqrt(5) then the value of x^(3) + x^(-3) is :

    Text Solution

    |

  15. If a^3-b^3=899 and a-b=31, then (a-b)^2 +3ab is equal to: यदि a^3-b^...

    Text Solution

    |

  16. If x^4+x^(-4)=194, (x succ 0) then the value of (2x-4)^2 is: यदि x^4...

    Text Solution

    |

  17. If x - (1)/(x) = 7, then x^(3) - (1)/(x^(3)) is equal to -

    Text Solution

    |

  18. If x^4+x^(-4)=1154, (x succ 0) then the value of 2(x-3)^2 is: यदि x...

    Text Solution

    |

  19. If a^3-b^3=899 and a-b=29, then (a-b)^2 +3ab is equal to: यदि a^3-b^...

    Text Solution

    |

  20. If (3x+1)^3+(x-3)^3+ (2x-4)^3= 6(3x+1)(x - 3)(x -2) then what is the ...

    Text Solution

    |