Home
Class 14
MATHS
If a + (1)/(a) = 3, then the value of (a...

If `a + (1)/(a) = 3`, then the value of `(a^(6) + (1)/(a^(6)))` is equal to :

A

319

B

322

C

780

D

730

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( a + \frac{1}{a} = 3 \) and find the value of \( a^6 + \frac{1}{a^6} \), we can follow these steps: ### Step 1: Find \( a^2 + \frac{1}{a^2} \) We start with the equation: \[ a + \frac{1}{a} = 3 \] We can square both sides to find \( a^2 + \frac{1}{a^2} \): \[ \left( a + \frac{1}{a} \right)^2 = a^2 + 2 + \frac{1}{a^2} \] This simplifies to: \[ 3^2 = a^2 + 2 + \frac{1}{a^2} \] \[ 9 = a^2 + 2 + \frac{1}{a^2} \] Subtracting 2 from both sides gives: \[ a^2 + \frac{1}{a^2} = 9 - 2 = 7 \] ### Step 2: Find \( a^3 + \frac{1}{a^3} \) Next, we can use the identity: \[ a^3 + \frac{1}{a^3} = \left( a + \frac{1}{a} \right) \left( a^2 + \frac{1}{a^2} \right) - \left( a + \frac{1}{a} \right) \] Substituting the known values: \[ a^3 + \frac{1}{a^3} = 3 \cdot 7 - 3 \] Calculating this gives: \[ a^3 + \frac{1}{a^3} = 21 - 3 = 18 \] ### Step 3: Find \( a^6 + \frac{1}{a^6} \) Now we can use the identity: \[ a^6 + \frac{1}{a^6} = \left( a^3 + \frac{1}{a^3} \right)^2 - 2 \] Substituting the value we found: \[ a^6 + \frac{1}{a^6} = 18^2 - 2 \] Calculating \( 18^2 \): \[ 18^2 = 324 \] Thus: \[ a^6 + \frac{1}{a^6} = 324 - 2 = 322 \] ### Final Answer Therefore, the value of \( a^6 + \frac{1}{a^6} \) is: \[ \boxed{322} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If a + (1)/(a) = sqrt5, then the value of a ^(6) + (1)/(a ^(6)) is

If a+(1)/(a)=sqrt3 then the value of a^(6)+(1)/(a^(6))+2 will be

The value of int(x^(2))/(1+x^(6))dx is equal to

(36)^(1/6) is equal to

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. (x+y)^(1/3)+(z+y)^(1/3)=- (x+z)^(1/3), then (x^3+y^3+z^3) can be expre...

    Text Solution

    |

  2. If a + (1)/(a) = 2, what is the value of (a^(4) - (1)/(a^(4))) ?

    Text Solution

    |

  3. If a + (1)/(a) = 3, then the value of (a^(6) + (1)/(a^(6))) is equal t...

    Text Solution

    |

  4. If a^((1)/(3)) + b^((1)/(3)) + c^((1)/(3)) = 0, then (a+b+c)^(6) is eq...

    Text Solution

    |

  5. If a + b -c = 12 and a^(2) + b^(2) + c^(2) = 110, (p) ab + bc + ca ...

    Text Solution

    |

  6. If a^2+b^2=169, and ab=60,(a succ b) then what is the value of (a^2-b^...

    Text Solution

    |

  7. If x=1/12.13+1/13.14+1/14.15........+1/23.24, y=1/36.37+1/37.38+1/38.3...

    Text Solution

    |

  8. If (10)/(7)(1-2.43 xx 10^(-3)) = 1.417 + x, then x is equal to :

    Text Solution

    |

  9. If (3x+1)^3+(x-3)^3+ (2x-4)^3= 6(3x+1)(x - 3)(x -2) then what is the ...

    Text Solution

    |

  10. If (1.25)(1-6.4xx10^-5)=1.2496+a, then a is equal to : यदि (1.25)(1...

    Text Solution

    |

  11. If (a+b+4){ab+4(a+b)}-4ab = 0, a ne -4, b ne -4, then, {1/((a+b+4)^117...

    Text Solution

    |

  12. Given , a+1/a=2, what is the value of (a^118+1/a^117) ? यदि a+1/a=2 ...

    Text Solution

    |

  13. If a=sqrt8-sqrt7 and a=1/b, then (a^2+b^2-3ab)/(a^2+ab+b^2) is equal t...

    Text Solution

    |

  14. Given that x,y,z are positive real numbers, if (x+y)^2-z^2=8, (z+y)^2-...

    Text Solution

    |

  15. If a+b+c = 5 and ab+bc+ca = 4, then a^3+b^3+c^3-3abc is equal to : य...

    Text Solution

    |

  16. If a^(3) - b^(3) = 208 and a - b = 4 then (a + b)^(2) - ab is equ...

    Text Solution

    |

  17. If x + (1)/( x) = 5 then x^(3) + (1)/( x^(3)) is equal to

    Text Solution

    |

  18. If (x-5)^3+(x-6)^3+(x-7)^3= 3 (x - 5) (x - 6) (x - 7), then what is th...

    Text Solution

    |

  19. If (2x+3)^3+(x-8)^3+(x+13)^3= (2x +3)(3x -24)(x +13) , then what is th...

    Text Solution

    |

  20. If a^(3) + b^(3) = 5824 and a+b = 28 then (a-b)^(2) + ab is equal to :

    Text Solution

    |