Home
Class 14
MATHS
If a^(3) + b^(3) = 5824 and a+b = 28 the...

If `a^(3) + b^(3) = 5824` and `a+b = 28` then `(a-b)^(2) + ab` is equal to :

A

208

B

152

C

180

D

236

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((a-b)^2 + ab\) given that \(a^3 + b^3 = 5824\) and \(a + b = 28\). ### Step 1: Use the identity for the sum of cubes We know that: \[ a^3 + b^3 = (a+b)(a^2 - ab + b^2) \] Substituting the known values: \[ 5824 = 28(a^2 - ab + b^2) \] ### Step 2: Simplify the equation Now, we can simplify the equation: \[ a^2 - ab + b^2 = \frac{5824}{28} \] Calculating the right side: \[ \frac{5824}{28} = 208 \] So we have: \[ a^2 - ab + b^2 = 208 \] ### Step 3: Use the square of the sum We also know that: \[ a^2 + b^2 = (a+b)^2 - 2ab \] Substituting \(a + b = 28\): \[ a^2 + b^2 = 28^2 - 2ab = 784 - 2ab \] ### Step 4: Substitute into the equation Now we can substitute \(a^2 + b^2\) into the equation from Step 2: \[ 784 - 2ab - ab = 208 \] This simplifies to: \[ 784 - 3ab = 208 \] ### Step 5: Solve for \(ab\) Rearranging gives: \[ 3ab = 784 - 208 \] Calculating the right side: \[ 3ab = 576 \] Thus: \[ ab = \frac{576}{3} = 192 \] ### Step 6: Find \((a-b)^2 + ab\) Now we need to find \((a-b)^2 + ab\). We can use the identity: \[ (a-b)^2 = (a+b)^2 - 4ab \] Substituting the known values: \[ (a-b)^2 = 28^2 - 4 \cdot 192 \] Calculating: \[ (a-b)^2 = 784 - 768 = 16 \] ### Step 7: Calculate \((a-b)^2 + ab\) Now we can find: \[ (a-b)^2 + ab = 16 + 192 = 208 \] Thus, the final answer is: \[ \boxed{208} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|194 Videos
  • AGE

    MOTHERS|Exercise MULTIPLE CHOICE QUESTION|30 Videos
  • CO-ORDINATE GEOMATRY

    MOTHERS|Exercise OBJECTIVE QUESTION|72 Videos

Similar Questions

Explore conceptually related problems

If a^(3) - b^(3) = 210 and a-b = 5 , then ( a+ b)^(2) - ab is equal to :

MOTHERS-ALGEBRA -MULTIPLE CHOICE QUESTION
  1. If (x-5)^3+(x-6)^3+(x-7)^3= 3 (x - 5) (x - 6) (x - 7), then what is th...

    Text Solution

    |

  2. If (2x+3)^3+(x-8)^3+(x+13)^3= (2x +3)(3x -24)(x +13) , then what is th...

    Text Solution

    |

  3. If a^(3) + b^(3) = 5824 and a+b = 28 then (a-b)^(2) + ab is equal to :

    Text Solution

    |

  4. If x - (1)/(x) = 6, then x^(3) - (1)/(x^(3)) is equal to :

    Text Solution

    |

  5. If a^3-b^3=1603 and (a-b)=7, then (a+b)^2 -ab is equal to: यदिa^3-b^...

    Text Solution

    |

  6. If (x+4)^3+(2x+1)^3+(2x+5)^3= (3x +12) (2x +1)(2x +5) , then what is t...

    Text Solution

    |

  7. If x + (1)/( x) = 8 , then x^(2) + (1)/( x^(2)) is equal to :

    Text Solution

    |

  8. If x + (1)/(x) = 7, then x^(3) + (1)/(x^(3)) is equal to :

    Text Solution

    |

  9. If a^3-b^3=3552 and (a-b)=6, then (a+b)^2-ab is equal to: यदि a^3-b...

    Text Solution

    |

  10. If (x-3)^3+(2x-5)^3+(x-4)^3=(3x -9) (2x -5) (x -4), then what is the v...

    Text Solution

    |

  11. If (2x-5)^3+(x+2)^3+(3x-9)^3= (2x- 5)(3x -9)(3x+ 6 ), then what is the...

    Text Solution

    |

  12. If x^2+1/x^2=11, then x-1/x is equal to : यदि x^2+1/x^2=11 है, तो x...

    Text Solution

    |

  13. If x - (1)/(x) = 4, then x^(3) - (1)/(x^(3)) is equal to -

    Text Solution

    |

  14. If ab+bc+ca=8 and a+b+c=12 then (a^2+b^2+c^2) is equal to: यदि ab+b...

    Text Solution

    |

  15. If (2x-5)^3+(x-4)^3+(x-11)^3=3 (2x- 5)(x -4)(x-11), then what is the v...

    Text Solution

    |

  16. If a^3-b^3=416 and a-b=8, then (a+b)^2 -ab is equal to: यदिa^3-b^3=4...

    Text Solution

    |

  17. If x + (1)/(x) = 4sqrt(3), then find the value of x^(2) + (1)/(x^(2)) ...

    Text Solution

    |

  18. If x+1/x= 2 sqrt3, then x^2+1/x^2 is equal to : यदि x+1/x= 2 sqrt3 ...

    Text Solution

    |

  19. If (2x-1)^3+(3x-4)^3+(x-7)^3= (6x-3) (3x-4)(x-7), then what is the val...

    Text Solution

    |

  20. If a^(3) + b^(3) = 416 and a + b = 16, then (a-b)^(2) + ab is equal to...

    Text Solution

    |