Home
Class 11
MATHS
If z=x+iy and |z|=1, show that the compl...

If z=x+iy and |z|=1, show that the complex number `z_1=(z-1)/(z+1)` is purely imagine.

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    JBD PUBLICATION|Exercise EXAMPLE|36 Videos
  • BINOMIAL THEOREM

    JBD PUBLICATION|Exercise EXAMPLE|23 Videos
  • CONIC SECTIONS

    JBD PUBLICATION|Exercise EXAMPLE|35 Videos

Similar Questions

Explore conceptually related problems

If z = x + iy and w=(1-iz)/(z-i) , show that : |w|=1 implies z is purely real.

If z_1,z_2 are comples numbers such that (2 z_1)/(3z_2) is purely imaginary number, then find |(z_1-z_2)/ (z_1+ z_2)| .

If |z|=2, the points representing the complex numbers -1+5z will lie on

If |z|=1, prove that (z-1)/(z+1) (z ne -1) is purely imaginary number. What will you conclude if z=1?

If z_1 and z_2 are two complex number such that |(z_1-z_2)/(z_1+z_2)|=1 , Prove that iz_1/z_2=k where k is a real number Find the angle between the lines from the origin to the points z_1 + z_2 and z_1-z_2 in terms of k

If z=x+iy and |z+a|=3|z-a|, show that 2(x^2+y^2)=5ax-2a^2 .

A,B and C are the points respectively the complex numbers z_(1),z_(2) and z_(3) respectivley, on the complex plane and the circumcentre of /_\ABC lies at the origin. If the altitude of the triangle through the vertex. A meets the circumcircle again at P, prove that P represents the complex number (-(z_(2)z_(3))/(z_(1))) .

If w=alpha+ibeta, where beta!=0 and z!=1 , satisfies the condition that ((w- bar w z)/(1-z)) is a purely real, then the set of values of z is |z|=1,z!=2 (b) |z|=1a n dz!=1 (c) z=bar z (d) None of these

A complex number z is said to be unimodular if abs(z)=1 . Suppose z_(1) and z_(2) are complex numbers such that (z_(1)-2z_(2))/(2-z_(1)z_(2)^_) is unimodular and z_(2) is not unimodular. Then the point z_(1) lies on a

Let z_(1) and z_(2) be two distinct complex numbers and z=(1-t)z_(1)+tz_(2) , for some real number t with 0 lt t lt 1 and i=sqrt(-1) . If arg(w) denotes the principal argument of a non-zero complex number w, then a. abs(z-z_(1))+abs(z-z_(2))=abs(z_(1)-z_(2)) b. arg(z-z_(1))=arg(z-z_(2)) c. |{:(z-z_(1),bar(z)-bar(z)_(1)),(z_(2)-z_(1),bar(z)_(2)-bar(z)_(1)):}|=0 d. arg(z-z_(1))=arg(z_(2)-z_(1))

JBD PUBLICATION-COMPLEX NUMBERS AND QUADRATIC EQUATIONS-EXAMPLE
  1. If z=x+iy and |z+a|=3|z-a|, show that 2(x^2+y^2)=5ax-2a^2.

    Text Solution

    |

  2. Solve 2x^2+x+1=0

    Text Solution

    |

  3. Solve the following equation : 2x^2-(3 +7i)x + (9i-3)=0.

    Text Solution

    |

  4. Find the modulus and argument of the complex number (1+2 i)/(1- 3i)

    Text Solution

    |

  5. If (x + iy)^3 = u + iv, then show that u/x +v/y = 4(x^2 - y^2)

    Text Solution

    |

  6. If x-iy= sqrt((a-ib)/(c-id)) prove that (x^2+y^2)^2= (a^2+b^2)/(c^2+d^...

    Text Solution

    |

  7. If (a+ib)(c+id)(e+if)(g+ih)=A+iB, then show that: (a^2+b^2)(c^2+d^2)(e...

    Text Solution

    |

  8. Find the square root of i.

    Text Solution

    |

  9. Find the square root of 1+i.

    Text Solution

    |

  10. Find the squre root of 1+2sqrt(6)i.

    Text Solution

    |

  11. Convert each of the complex numbers given below in the polar form. Als...

    Text Solution

    |

  12. Convert each of the complex numbers given below in the polar form. Als...

    Text Solution

    |

  13. Convert each of the complex number -16/(1+isqrt3) into polar form. Als...

    Text Solution

    |

  14. If ((1+i)/(1-i))^3-((1-i)/(1+i))^3=x+iy, then find (x,y)

    Text Solution

    |

  15. If (x+iy)^(1/3)=a+ib, where a,b,x, y in R, show that x/a-y/b=-2(a^2+b^...

    Text Solution

    |

  16. If z=x+iy and |z|=1, show that the complex number z1=(z-1)/(z+1) is pu...

    Text Solution

    |

  17. Convert z= (i-1)/(cos frac (pi)(3)+i sin frac (pi)(3)) in polar form.

    Text Solution

    |

  18. If the imaginary part of (2z+1)/(iz+1) is -2, then the locus of the po...

    Text Solution

    |

  19. If the complex number z1 and z2be such that arg(z1)-arg(z2)=0, then sh...

    Text Solution

    |

  20. Solve the system of equations Re(z^2)=0, |z|=2.

    Text Solution

    |